Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 33, Issue: 1, page 169-189
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGuermond, Jean-Luc. "Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale." ESAIM: Mathematical Modelling and Numerical Analysis 33.1 (2010): 169-189. <http://eudml.org/doc/197451>.
@article{Guermond2010,
abstract = {
The Navier–Stokes equations are approximated by means of
a fractional step, Chorin–Temam projection method; the time derivative
is approximated by a three-level backward finite difference, whereas
the approximation in space is performed by a Galerkin technique.
It is shown that the proposed scheme yields an error
of $\{\cal O\}(\delta t^2 + h^\{l+1\})$
for the velocity in the norm of l2(L2(Ω)d), where l ≥ 1 is
the polynomial degree of the velocity approximation. It is also shown
that the splitting error of projection schemes based on the
incremental pressure correction is of $\{\cal O\}(\delta t^2)$ independent of the
approximation order of the velocity time derivative.
},
author = {Guermond, Jean-Luc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {
Incompressible Navier–Stokes equations;
Projection method; Second order approximation
Fractional-step method; Finite elements.
;
Incompressible Navier–Stokes equations;
Projection method; Second order approximation
Fractional-step method; Finite elements.
; error estimation; fractional step; Chorin-Temam projection method; three-level backward finite difference; Galerkin technique; splitting error},
language = {fre},
month = {3},
number = {1},
pages = {169-189},
publisher = {EDP Sciences},
title = {Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale},
url = {http://eudml.org/doc/197451},
volume = {33},
year = {2010},
}
TY - JOUR
AU - Guermond, Jean-Luc
TI - Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 33
IS - 1
SP - 169
EP - 189
AB -
The Navier–Stokes equations are approximated by means of
a fractional step, Chorin–Temam projection method; the time derivative
is approximated by a three-level backward finite difference, whereas
the approximation in space is performed by a Galerkin technique.
It is shown that the proposed scheme yields an error
of ${\cal O}(\delta t^2 + h^{l+1})$
for the velocity in the norm of l2(L2(Ω)d), where l ≥ 1 is
the polynomial degree of the velocity approximation. It is also shown
that the splitting error of projection schemes based on the
incremental pressure correction is of ${\cal O}(\delta t^2)$ independent of the
approximation order of the velocity time derivative.
LA - fre
KW -
Incompressible Navier–Stokes equations;
Projection method; Second order approximation
Fractional-step method; Finite elements.
;
Incompressible Navier–Stokes equations;
Projection method; Second order approximation
Fractional-step method; Finite elements.
; error estimation; fractional step; Chorin-Temam projection method; three-level backward finite difference; Galerkin technique; splitting error
UR - http://eudml.org/doc/197451
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.