Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids
Bruno Després; Frédéric Lagoutière
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 6, page 1159-1183
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDesprés, Bruno, and Lagoutière, Frédéric. "Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids." ESAIM: Mathematical Modelling and Numerical Analysis 35.6 (2010): 1159-1183. <http://eudml.org/doc/197495>.
@article{Després2010,
abstract = {
We study a family of non linear schemes for the numerical solution of
linear advection on arbitrary grids in several space dimension.
A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate.
This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.
},
author = {Després, Bruno, Lagoutière, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {LVD estimate; Harten Formalism; linear advection; finite volume methods.; weak convergence; longitudinal variation diminishing estimate; finite volume method; Perron-Frobenius theorem; generalized Harten formalism},
language = {eng},
month = {3},
number = {6},
pages = {1159-1183},
publisher = {EDP Sciences},
title = {Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids},
url = {http://eudml.org/doc/197495},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Després, Bruno
AU - Lagoutière, Frédéric
TI - Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 6
SP - 1159
EP - 1183
AB -
We study a family of non linear schemes for the numerical solution of
linear advection on arbitrary grids in several space dimension.
A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate.
This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.
LA - eng
KW - LVD estimate; Harten Formalism; linear advection; finite volume methods.; weak convergence; longitudinal variation diminishing estimate; finite volume method; Perron-Frobenius theorem; generalized Harten formalism
UR - http://eudml.org/doc/197495
ER -
References
top- J.B. Bell, C.N. Dawson and G.R. Shubin, An unsplit higher order Godunov method for scalar conservation laws in multiple dimensions. J. Comp. Phys.17 (1992) 1-24.
- R. Botchorishvili, B. Perthame and A. Vasseur, Schémas d'équilibre pour des lois de conservation scalaires avec des termes sources raides. Report No. 3891, INRIA, France (2000).
- C. Chainais-Hillairet, First and second order schemes for a hyperbolic equation: convergence and error estimate, in Finite Volume for Complex Applications Problems and Perspectives, Benkhaldoun and Vilsmeier, Eds., Hermes, Paris (1997) 137-144.
- S. Champier, T. Gallouët and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math.66 (1993) 139-157.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
- B. Cockburn, On the continuity in BV of the L2-projection into finite element spaces. Math. Comp.57 (1991) 551-561.
- B. Cockburn, F. Coquel and P. Le Floch, An error estimate for finite volume multidimensional conservation laws. Tech. Report No. 285 CMAPX, École Polytechnique, France (1993).
- B. Cockburn and C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws: the multidimensional case. Math. Comp.54 (1990) 545-581.
- P. Collella, Multidimensional upwind methods for hyperbolic conservation laws. J. Comp. Phys.87 (1990) 171-200.
- F. Coquel and P. Le Floch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comp.57 (1991) 169-210.
- R. Dautray and J.-L. Lions, Analyse numérique et calcul numérique pour les sciences et les techniques. Masson, Paris (1984).
- H. Deconinck, R. Struijs and G. Bourgeois, Compact advection schemes on unstructured grids, in Computational Fluid Dynamics Lect. Ser.1993-04, von Karman Institute, Rhode-Saint-Genèse, Belgium (1993).
- B. Després and F. Lagoutière, Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire. C. R. Acad. Sci., Paris, Sér. I, Math.328 (1999) 939-944.
- B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. In preparation.
- R.J. DiPerna, Measure value solutions to conservation laws. Arch. Rational Mech. Anal.88 (1985) 223-270.
- F. Dubois and G. Mehlman, A non-parametrized entropy correction for Roe's approximate Riemann solver. Numer. Math.73 (1996) 169-208.
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Tech. Report No. 97-19, LATP, UMR 6632, Marseille, France. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam.
- E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984).
- E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, in Applied Mathematical Sciences118, Springer, New York (1996).
- E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws, in Mathématiques & Applications3-4, Ellipses, Paris (1991).
- H. Harten, On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal.21 (1984) 1-23.
- H. Harten, High resolution schemes for hyperbolic conservation laws. J. Comp. Phys.49 (1983) 357-393.
- A. Harten, S. Osher, B. Engquist and S. Chakravarthy, Some results on uniformly High Order Accurate Essentially Non-oscillatory Schemes, in Adv. Numer. Appl. Math., ICASE Report No. 86-18, J.C. South, Jr and M.Y. Hussaini, Eds. (1986) 383-436; J. Appl. Numer. Math.2 (1986) 347-377.
- S.N. Kruzkov, Generalized solutions of the Cauchy problem in the large for non linear equations of first order. Dokl. Akad. Nauk SSSR187 (1970) 29-32. English translation in Soviet Math. Dokl.10 (1969).
- N.N. Kuznetzov, Finite difference schemes for multidimensional first order quasi-linear equations in classes of discontinuous functions. Probl. Math. Phys. Vych. Mat., Nauka, Moscow (1977) 181-194.
- F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2000).
- R.J. LeVeque, Numerical Methods for Conservation Laws. ETHZ Zürich, Birkhäuser, Basel (1992).
- R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flows. SIAM J. Numer. Anal.33 (1996) 627-665.
- P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc.7 (1994) 169-191.
- S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conservation laws. Math. Comp.50 (1988) 19-51.
- P.L. Roe, Generalized formulations of TVD Lax-Wendroff schemes. ICASE Report No. 84-53, ICASE, NASA Langley Research Center, Hampton, VA (1984).
- P.L. Roe and D. Sidilkover, Optimum positive linear schemes for advection in two and three dimensions. SIAM J. Numer. Anal.29 (1992) 1542-1568.
- P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal.21 (1984) 995-1011.
- A. Szepessy, Convergence of a streamline diffusion finite element method for conservation law with boundary conditions. RAIRO Modél. Math. Anal. Numér.25 (1991) 749-783.
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg, New York (1997).
- B. Van Leer, Towards the ultimate conservative difference scheme, V. J. Comput. Phys32 (1979) 101-136.
- R.S. Varga, Matrix Iterative Analysis. 2. Printing, in Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ (1963).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.