Page 1 Next

Displaying 1 – 20 of 30

Showing per page

A continuous finite element method with face penalty to approximate Friedrichs' systems

Erik Burman, Alexandre Ern (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

A continuous finite element method to approximate Friedrichs' systems is proposed and analyzed. Stability is achieved by penalizing the jumps across mesh interfaces of the normal derivative of some components of the discrete solution. The convergence analysis leads to optimal convergence rates in the graph norm and suboptimal of order ½ convergence rates in the L2-norm. A variant of the method specialized to Friedrichs' systems associated with elliptic PDE's in mixed form and reducing the number...

An Adaptive Multi-level method for Convection Diffusion Problems

Martine Marion, Adeline Mollard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article we introduce an adaptive multi-level method in space and time for convection diffusion problems. The scheme is based on a multi-level spatial splitting and the use of different time-steps. The temporal discretization relies on the characteristics method. We derive an a posteriori error estimate and design a corresponding adaptive algorithm. The efficiency of the multi-level method is illustrated by numerical experiments, in particular for a convection-dominated problem.

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly...

Asymptotic dynamics in double-diffusive convection

Mikołaj Piniewski (2008)

Applicationes Mathematicae

We consider the double-diffusive convection phenomenon and analyze the governing equations. A system of partial differential equations describing the convective flow arising when a layer of fluid with a dissolved solute is heated from below is considered. The problem is placed in a functional analytic setting in order to prove a theorem on existence, uniqueness and continuous dependence on initial data of weak solutions in the class ( [ 0 , ) ; H ) L ² l o c ( + ; V ) . This theorem enables us to show that the infinite-dimensional...

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems

Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Alice Kliková (2002)

Applications of Mathematics

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2 ( L 2 ) and L 2 ( H 1 ) error estimates are established. At the end...

Generalized Harten formalism and longitudinal variation diminishing schemes for linear advection on arbitrary grids

Bruno Després, Frédéric Lagoutière (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a family of non linear schemes for the numerical solution of linear advection on arbitrary grids in several space dimension. A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate. This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.

Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids

Bruno Després, Frédéric Lagoutière (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a family of non linear schemes for the numerical solution of linear advection on arbitrary grids in several space dimension. A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate. This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.

Reduced basis method for finite volume approximations of parametrized linear evolution equations

Bernard Haasdonk, Mario Ohlberger (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P2DEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations....

Currently displaying 1 – 20 of 30

Page 1 Next