Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 1, page 63-84
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLasiecka, Irena, and Marchand, Rich. "Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells." ESAIM: Mathematical Modelling and Numerical Analysis 34.1 (2010): 63-84. <http://eudml.org/doc/197516>.
@article{Lasiecka2010,
abstract = {
Finite element semidiscrete approximations on nonlinear dynamic
shallow shell models in considered. It is shown that the algorithm
leads to global, optimal rates of convergence. The result
presented in the paper improves upon the existing literature where the
rates of convergence were derived for small initial data only
[19].
},
author = {Lasiecka, Irena, Marchand, Rich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite elements; nonlinear dynamic shells; optimal
error estimates; global existence and uniqueness.; semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence},
language = {eng},
month = {3},
number = {1},
pages = {63-84},
publisher = {EDP Sciences},
title = {Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells},
url = {http://eudml.org/doc/197516},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Lasiecka, Irena
AU - Marchand, Rich
TI - Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 1
SP - 63
EP - 84
AB -
Finite element semidiscrete approximations on nonlinear dynamic
shallow shell models in considered. It is shown that the algorithm
leads to global, optimal rates of convergence. The result
presented in the paper improves upon the existing literature where the
rates of convergence were derived for small initial data only
[19].
LA - eng
KW - Finite elements; nonlinear dynamic shells; optimal
error estimates; global existence and uniqueness.; semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence
UR - http://eudml.org/doc/197516
ER -
References
top- M. Bernadou, Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994).
- M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136.
- M. Bernadou and B. Lalanne, On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264.
- M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992).
- M. Bernadou and J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl.60 (1981) 285-308.
- P.G. Ciarlet, The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
- M.C. Delfour and J.P. Zolésio, Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations128 (1995) 125-167.
- W. Flügge, Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972).
- R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984).
- R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev.21 (1979) 167-212.
- R. Glowinski and M. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172.
- A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968).
- W.T. Koiter, On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54.
- J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989).
- I. Lasiecka, Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control36 (1998) 1376-1422.
- I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal.68 (1998) 123-145.
- J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
- J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972).
- L. Mansfield, Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik42 (1983) 213-235.
- R. Marchand, Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).
- V.G. Mazya and T.V. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985).
- A. Raoult, Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).
- H.L. Royden, Real Analysis. Macmillan Publishing Company, 3rd edn. (1988).
- V.I. Sedenko, The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.
- V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.