Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells

Irena Lasiecka; Rich Marchand

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 1, page 63-84
  • ISSN: 0764-583X

Abstract

top
Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result presented in the paper improves upon the existing literature where the rates of convergence were derived for small initial data only [19].

How to cite

top

Lasiecka, Irena, and Marchand, Rich. "Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells." ESAIM: Mathematical Modelling and Numerical Analysis 34.1 (2010): 63-84. <http://eudml.org/doc/197516>.

@article{Lasiecka2010,
abstract = { Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result presented in the paper improves upon the existing literature where the rates of convergence were derived for small initial data only [19]. },
author = {Lasiecka, Irena, Marchand, Rich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite elements; nonlinear dynamic shells; optimal error estimates; global existence and uniqueness.; semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence},
language = {eng},
month = {3},
number = {1},
pages = {63-84},
publisher = {EDP Sciences},
title = {Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells},
url = {http://eudml.org/doc/197516},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Lasiecka, Irena
AU - Marchand, Rich
TI - Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 1
SP - 63
EP - 84
AB - Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result presented in the paper improves upon the existing literature where the rates of convergence were derived for small initial data only [19].
LA - eng
KW - Finite elements; nonlinear dynamic shells; optimal error estimates; global existence and uniqueness.; semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence
UR - http://eudml.org/doc/197516
ER -

References

top
  1. M. Bernadou, Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994).  Zbl0355.65082
  2. M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136.  
  3. M. Bernadou and B. Lalanne, On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264.  Zbl0706.73051
  4. M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992).  Zbl0808.73045
  5. M. Bernadou and J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl.60 (1981) 285-308.  Zbl0424.35040
  6. P.G. Ciarlet, The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).  Zbl0383.65058
  7. M.C. Delfour and J.P. Zolésio, Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations128 (1995) 125-167.  Zbl0852.73035
  8. W. Flügge, Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972).  Zbl0224.73001
  9. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984).  Zbl0536.65054
  10. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev.21 (1979) 167-212.  Zbl0427.65073
  11. R. Glowinski and M. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172.  Zbl0661.65105
  12. A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968).  
  13. W.T. Koiter, On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54.  
  14. J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989).  Zbl0696.73034
  15. I. Lasiecka, Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control36 (1998) 1376-1422.  Zbl0911.93036
  16. I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal.68 (1998) 123-145.  Zbl0905.35092
  17. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).  Zbl0189.40603
  18. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972).  Zbl0223.35039
  19. L. Mansfield, Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik42 (1983) 213-235.  Zbl0536.73065
  20. R. Marchand, Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).  
  21. V.G. Mazya and T.V. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985).  Zbl0467.35018
  22. A. Raoult, Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).  
  23. H.L. Royden, Real Analysis. Macmillan Publishing Company, 3rd edn. (1988).  Zbl0704.26006
  24. V.I. Sedenko, The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.  
  25. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984).  Zbl0528.65052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.