A new H(div)-conforming p-interpolation operator in two dimensions

Alexei Bespalov; Norbert Heuer

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

  • Volume: 45, Issue: 2, page 255-275
  • ISSN: 0764-583X

Abstract

top
In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) 𝐇 ˜ -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space 𝐇 ˜ -1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.

How to cite

top

Bespalov, Alexei, and Heuer, Norbert. "A new H(div)-conforming p-interpolation operator in two dimensions." ESAIM: Mathematical Modelling and Numerical Analysis 45.2 (2011): 255-275. <http://eudml.org/doc/197576>.

@article{Bespalov2011,
abstract = { In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) $\cap$$\{\bf \tilde H\}$-1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space $\{\bf \tilde H\}$-1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions. },
author = {Bespalov, Alexei, Heuer, Norbert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {p-interpolation; error estimation; Maxwell's equations; boundary element method.; -interpolation; boundary element method},
language = {eng},
month = {1},
number = {2},
pages = {255-275},
publisher = {EDP Sciences},
title = {A new H(div)-conforming p-interpolation operator in two dimensions},
url = {http://eudml.org/doc/197576},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Bespalov, Alexei
AU - Heuer, Norbert
TI - A new H(div)-conforming p-interpolation operator in two dimensions
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/1//
PB - EDP Sciences
VL - 45
IS - 2
SP - 255
EP - 275
AB - In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) $\cap$${\bf \tilde H}$-1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space ${\bf \tilde H}$-1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.
LA - eng
KW - p-interpolation; error estimation; Maxwell's equations; boundary element method.; -interpolation; boundary element method
UR - http://eudml.org/doc/197576
ER -

References

top
  1. I. Babuška and M. Suri, The h – p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér.21 (1987) 199–238.  
  2. I. Babuška, A. Craig, J. Mandel and J. Pitkäranta, Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal.28 (1991) 624–661.  
  3. A. Bespalov and N. Heuer, Optimal error estimation for H(curl)-conforming p-interpolation in two dimensions. SIAM J. Numer. Anal.47 (2009) 3977–3989.  
  4. A. Bespalov and N. Heuer, Natural p-BEM for the electric field integral equation on screens. IMA J. Numer. Anal. (2010) DOI:.  DOI10.1093/imanum/drn072
  5. A. Bespalov and N. Heuer, Thehp – BEMS with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis. Appl. Numer. Math.60 (2010) 705–718.  
  6. A. Bespalov, N. Heuer and R. Hiptmair, Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. arXiv:0907.5231 (2009).  
  7. D. Boffi, L. Demkowicz and M. Costabel, Discrete compactness for the p and hp 2D edge finite elements. Math. Models Methods Appl. Sci.13 (2003) 1673–1687.  
  8. D. Boffi, M. Costabel, M. Dauge and L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements. SIAM J. Numer. Anal.44 (2006) 979–1004.  
  9. D. Boffi, M. Costabel, M. Dauge, L. Demkowicz and R. Hiptmair, Discrete compactness for the p -version of discrete differential forms. arXiv:0909.5079 (2009).  
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics15. Springer-Verlag, New York (1991).  
  11. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal.43 (2005) 1–18.  
  12. A. Buffa and S.H. Christiansen, The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math.94 (2003) 229–267.  
  13. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations, Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci.24 (2001) 31–48.  
  14. A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math.95 (2003) 459–485.  
  15. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal.151 (2000) 221–276.  
  16. M. Costabel and A. McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z.265 (2010) 297–320.  
  17. M. Costabel, M. Dauge and L. Demkowicz, Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube. Math. Comp.77 (2008) 1967–1999.  
  18. L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi, F. Brezzi, L. Demkowicz, R. Duran, R. Falk and M. Fortin Eds., Lect. Notes in Mathematics1939, Springer-Verlag, Berlin (2008) 101–158.  
  19. L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal.41 (2003) 1195–1208.  
  20. M.R. Dorr, The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal.21 (1984) 1180–1207.  
  21. N. Heuer, Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math.88 (2001) 485–511.  
  22. R. Hiptmair, Discrete compactness for the p-version of tetrahedral edge elements. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008) arXiv:0901.0761.  
  23. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and ApplicationsI. Springer-Verlag, New York (1972).  
  24. S.E. Mikhailov, About traces, extensions and co-normal derivative operators on Lipschitz domains, in Integral Methods in Science and Engineering: Techniques and Applications, C. Constanda and S. Potapenko Eds., Birkhäuser, Boston (2008) 149–160.  
  25. R.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical AnalysisII, P.G. Ciarlet and J.-L. Lions Eds., Amsterdam, North-Holland (1991) 523–639.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.