Spatiotemporal Dynamics in a Spatial Plankton System

R. K. Upadhyay; W. Wang; N. K. Thakur

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 5, page 102-122
  • ISSN: 0973-5348

Abstract

top
In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots → spot-stripe mixtures → stripes → hole-stripe mixtures holes → wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.

How to cite

top

Upadhyay, R. K., Wang, W., and Thakur, N. K.. "Spatiotemporal Dynamics in a Spatial Plankton System." Mathematical Modelling of Natural Phenomena 5.5 (2010): 102-122. <http://eudml.org/doc/197652>.

@article{Upadhyay2010,
abstract = {In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots → spot-stripe mixtures → stripes → hole-stripe mixtures holes → wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.},
author = {Upadhyay, R. K., Wang, W., Thakur, N. K.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {spatial plankton system; predator-prey interaction; globally asymptotically stable; pattern formation},
language = {eng},
month = {7},
number = {5},
pages = {102-122},
publisher = {EDP Sciences},
title = {Spatiotemporal Dynamics in a Spatial Plankton System},
url = {http://eudml.org/doc/197652},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Upadhyay, R. K.
AU - Wang, W.
AU - Thakur, N. K.
TI - Spatiotemporal Dynamics in a Spatial Plankton System
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/7//
PB - EDP Sciences
VL - 5
IS - 5
SP - 102
EP - 122
AB - In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots → spot-stripe mixtures → stripes → hole-stripe mixtures holes → wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.
LA - eng
KW - spatial plankton system; predator-prey interaction; globally asymptotically stable; pattern formation
UR - http://eudml.org/doc/197652
ER -

References

top
  1. M. Abbott. Phytoplankton patchiness: ecological implications and observation methods. In: Patch dynamics (Levin, S. A., Powell, T. M. and Steele, J. H., eds.), Lecture Notes in Biomath., 96 (1993), 37-49.  
  2. A. D. Bazykin, A.I. Khibnik, B. Krauskopf, B. Nonlinear dynamics of interacting populations. World Scientific, Singapore, 1998.  
  3. B. Chen, M. Wang. Qualitative analysis for a diffusive predator-prey model. Comp. Math. with Appl., 55 (2008), 339-355. 
  4. B. Dubey, J. Hussain. Modelling the interaction of two biological species in polluted environment. J. Math. Anal. Appl., 246 (2000), 58-79. 
  5. M. J. R. Fasham. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev., 16 (1978), 43-79. 
  6. C. Fu, R. Mohn, L.P. Fanning. Why the Atlantic cod stock off eastern Nova Scotia has not recovered. Can. J. Fish. Aquat. Sci., 58 (2001), 1613-1623. 
  7. H. Gao, H. Wei, W. Sun, X. Zhai. Functions used in biological models and their influence on simulations. Indian J. Marine Sci., 29 (2000), 230-237. 
  8. C.H. Greene, E. A. Widder, M. J. Youngbluth, A. Tamse, G. E. Johnson. The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layers. Limnology and Oceanography, 37 (1992), 650-658. 
  9. V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. Mooij, S. Railsback, H. Thulke, J. Weiner, T. Wiegand, D. DeAngelisPattern-oriented modeling of agent-based complex systems: lessons from ecology, Science, 310 (2005), 987–991. 
  10. A.C. Hammer, J.W. Pitchford. The role of mixotrophy in plankton bloom dynamics and the consequences for productivity. ICES J. Marine Sci., 62 (2005), 833-840. 
  11. T.K. Kar, H. Matsuda. Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response. Nonlinear Anal.: Hybrid Systems, 1 (2007), 59-67. 
  12. M. Liermann, R. Hilborn. Depensation: Evidence, models and implications. Fish and Fisheries, 2 (2001), 33-58. 
  13. C. Loehle. Challenges of ecological complexity. Ecological Complexity, 1 (2004), 3-6. 
  14. D. Ludwig, D. Jones, C. Holling. Qualitative analysis of an insect outbreak system: the spruce budworm and forest. J. Animal Eco., 47 (1978), 315-332. 
  15. F. Mackas, C. M. Boyd. Spectral analysis of zooplankton spatial heterogeneity. Science, 204 (1979), 62-64.  
  16. K. G. Magnusson, O.K. Palsson. Predator-prey interactions of cod and capelin in Icelandic waters. ICES Marine Science Symposium, 193 (1991), 153-170. 
  17. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. Roy. Soc. Lond. Series B, 251 (1993), 103-109. 
  18. H. Malchow. Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. Marine Systems, 7 (1996), 193-202. 
  19. H. Malchow. Non-equilibrium spatio-temporal patterns in models of non-linear plankton dynamics. Freshwater Biol., 45 (2000), 239-251. 
  20. H. Malchow, S. V. Petrovskii, A. B. Medvinsky. Numerical study of plankton-fish dynamics in a spatially structured and noisy environment. Ecol. Model., 149 (2002), 247-255. 
  21. H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, CRC Press, UK, 2008.  
  22. R. M. May. Stability and Complexity in model ecosystems. Princeton University press, Princeton, NJ. 1973.  
  23. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B.-L. Li. Spatiotemporal complexity of plankton and fish dynamics. SIAM Review, 44 (2002), 311-370. 
  24. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, E. Venturino, H. Malchow. Chaos and regular dynamics in a model multi-habitat plankton-fish community. J. Biosciences, 26 (2001), 109-120. 
  25. A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. -L. Li, Z. S. Lin, H. Malchow. Patchy environment as a factor of complex plankton dynamics. Phys. Rev. E, 64 (2001), 021915-021917. 
  26. L. Michaelis, M. L. Menten. Die Kinetik der Invertinwirkung. Biochem. Z., 49 (1913), 333-369. 
  27. A. Morozov. Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol., 265 (2010), 45-54. 
  28. A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen. Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations. Deep-Sea Research II, 55 (2008), 2285-2291. 
  29. J. D. Murray. Mathematical biology. Springer-Verlag, New York, 1989.  
  30. K. T. Nilssen, O.-P. Pedersen, L. Folkow, T. Haug. Food consumption estimates of Barents Sea harp seals. NAMMCO Scientific Publications, 2 (2000), 9-27. 
  31. A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin. 1980.  
  32. M. Pascual. 1993. Diffusion-induced chaos in a spatial predator-prey system. Proc. Royal Soc. B, 251 (1993), 1-7. 
  33. S. V. Petrovskii, H. Malchow. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Anal.: RWA, 1 (2000), 37-51. 
  34. S. V. Petrovskii, H. Malchow. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol., 59 (2001), 157-174. 
  35. J. -C. Poggiale, M. Gauduchon, P. Auger. Enrichment paradox induced by spatial heterogeneity in a phytoplankton- zooplankton system. Math. Model. Natural Phenom., 3 (2008), 87-102. 
  36. L. A. Real. The kinetic of functional response. Am. Nat., 111 (1977), 289-300. 
  37. M. Scheffer. Ecology of shallow lakes. Chapman and Hall, London. 1998.  
  38. M. Scheffer, R. J. De Boer. Implications of spatial heterogeneity for the paradox of enrichment. Ecology, 76 (1996), 2270-2277. 
  39. T. Schweder, G. S. Hagen, E. Hatlebakk. Direct and indirect effects of minke whale abundance on cod and herring fisheries: A scenario experiment for the Greater Barents Sea. NAMMCO Scientific Publications, 1 (2000), 120-133. 
  40. L. A. Segel, J. L. Jackson. Dissipative structure: An explanation and an ecological example. J. Theo. Biol., 37 (1972), 545-559. 
  41. J. A. Sherratt, B. T. Eagan, M. A. Lewis. Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Phil. Trans. Roy. Soc. Lond. B, 352 (1997), 21-38.  
  42. J. A. Sherratt, M. A. Lewis, A. C. Fowler. Ecological chaos in the wake of invasion. PNAS, 92 (1995), 2524-2528. 
  43. J. H. Steele. Spatial pattern in plankton communities. Plenum Press, New York, 1978.  
  44. J. H. Steele, E. W. Henderson. A simple plankton model. Am. Nat., 117 (1981), 676-691. 
  45. J. H. Steele, E. W. Henderson. A simple model for plankton patchiness. J. Plankton Research, 14 (1992), 1397-1403. 
  46. J. H. Steele, E. W. Henderson. The role of predation in plankton models. J. Plankton Research, 14 (1992), 157-172. 
  47. J. E. Truscott, J. Brindley. Equilibria, stability and excitability in a general class of plankton population models. Phil. Trans. Roy. Soc. Lond. A, 347 (1994), 703-718. 
  48. J. E. Truscott, J. Brindley. Ocean plankton populations as excitable media. Bull. Math. Biol., 56 (1994), 981-998. 
  49. P. Turchin. Complex population dynamics: a theoretical/empirical Synthesis. Princeton University Press, Princeton, NJ, 2003.  
  50. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos and pattern formation in a spatial predator-prey system with Holling type IV functional response. Math. Model. Natural Phenom., 3 (2008), 71-95. 
  51. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics. Chaos Solit. Fract., 40 (2009), 262-276. 
  52. R. K. Upadhyay, N. K. Thakur, B. Dubey. Nonlinear non-equilibrium pattern formation in a spatial aquatic system: Effect of fish predation. J. Biol. Sys., 18 (2010), 129-159. 
  53. J. Xiao, H. Li, J. Yang, G. Hu. Chaotic Turing pattern formation in spatiotemporal systems. Frontier of Physics in China, 1 (2006), 204-208. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.