# Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media

H. Aatif; K. Allali; K. El Karouni

Mathematical Modelling of Natural Phenomena (2010)

- Volume: 5, Issue: 5, page 123-137
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topAatif, H., Allali, K., and El Karouni, K.. "Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media." Mathematical Modelling of Natural Phenomena 5.5 (2010): 123-137. <http://eudml.org/doc/197694>.

@article{Aatif2010,

abstract = {The aim of this paper is to study the effect of vibrations on convective instability of
reaction fronts in porous media. The model contains reaction-diffusion equations coupled
with the Darcy equation. Linear stability analysis is carried out and the convective
instability boundary is found. The results are compared with direct numerical
simulations.},

author = {Aatif, H., Allali, K., El Karouni, K.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {linear stability analysis; reaction fronts; porous medium; numerical simulations},

language = {eng},

month = {9},

number = {5},

pages = {123-137},

publisher = {EDP Sciences},

title = {Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media},

url = {http://eudml.org/doc/197694},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Aatif, H.

AU - Allali, K.

AU - El Karouni, K.

TI - Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media

JO - Mathematical Modelling of Natural Phenomena

DA - 2010/9//

PB - EDP Sciences

VL - 5

IS - 5

SP - 123

EP - 137

AB - The aim of this paper is to study the effect of vibrations on convective instability of
reaction fronts in porous media. The model contains reaction-diffusion equations coupled
with the Darcy equation. Linear stability analysis is carried out and the convective
instability boundary is found. The results are compared with direct numerical
simulations.

LA - eng

KW - linear stability analysis; reaction fronts; porous medium; numerical simulations

UR - http://eudml.org/doc/197694

ER -

## References

top- K. Allali, A. Ducrot, A. Taik, V. Volpert. Convective instability of reaction fronts in porous media. Math. Model. Nat. Phenom., 2 (2007), no. 2, 20–39. Zbl06542980
- D. Aronson, H. Weinberger. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Lecture Notes in Math Vol. 446, pringer-Verlag, Berlin, 1975. Zbl0325.35050
- B.S. Bhadauria, P.K. Bhatia L. Debnath. Convection in Hele-Shaw cell with parametric excitation. Int. Journal of Non-Linear Mechanics, 40 (2005), 475–484. Zbl1141.76452
- T. Boulal, S. Aniss, M. Belhaq, R. Rand. Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer. Phys. Rev. E.52 (2007), 76, 56320.
- N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York, 1986. Zbl0602.92001
- E. Brunet B. Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E, 56 (1997), 2597–2604.
- U. Ebert W. Van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D146 (2000), 1–99. Zbl0984.35030
- M. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhauser, Basel, 1996. Zbl0863.60049
- G.Z. Gershuni, A.K. Kolesnikov, J.C. Legros B.I. Myznikova. On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect. Journal of Fluid Mechanics, 330 (1997), 251–269. Zbl0895.76032
- G.Z. Gershuni, E.M. Zhukhovitskii. The Convective Stability of Incompressible Fluids. Keter Publications, Jerusalem, (1976), 203–230.
- P.M. Gresho, R.L. Sani. The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech., 40 (1970), no. 4, 783–806. Zbl0191.56502
- B.T. Murray, S.R. Coriell G.B. McFadden. The effect of gravity modulation on solutal convection during directional solidification. Journal of Crystal Growth, 110 (1991), 713–723.
- J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989. Zbl0682.92001
- A.C. Or. Finite-wavelength instability in a horizontal liquid layer on an oscillating plane. J. Fluid Mech., 335 (1997), 213–232. Zbl0909.76034
- J.L. Rogers, M.F. Schatz, J.L. Bougie, J.B. Swift. Rayleigh-Bénard convection in a vertically oscillated fluid layer. Phys. Rev. Lett.84 (2000), no. 1, 87–90.
- S. Rosenblat G.A. Tanaka. Modulation of thermal convection instability. Phys. Fluids, 7 (1971), 1319–1322. Zbl0224.76038
- U.E. Volmar H.W. Muller. Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation. Phys. Rev. E, 56 (1997), 5423–5430.
- V. Volpert S. Petrovskii. Reaction-diffusion waves in biology. Physics of Life Reviews, 6 (2009), 267–310.
- A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic system. American Mathematical Society, Providence, RI, (1994) 448 pp. Zbl0805.35143
- M. Wadih, B. Roux. The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech., 40 (1970), no. 4, 783–806.
- A.A. Wheeler, G.B. McFadden, B.T. Murray, S.R. Coriell. Convective stability in the Rayleigh-Bénard and directional solidification problems: high-frequency gravity modulation. Phys. Fluids A, 3 (1991), no. 12, 2847–2858. Zbl0746.76040
- G.H. Wolf. Dynamic stabilization of interchange instability of a liquid-gas interface. Phys. Rev. Lett., 24 (1970), 444–446.
- D.R. Woods S.P. Lin. Instability of a liquid film flow over a vibrating inclined plane. J. Fluid Mech., 294 (1995), 391–407. Zbl0855.76023
- Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, Plenum, New York, 1985.
- Ya.B. Zeldovich D.A. Frank-Kamenetsky. The theory of thermal propagation of flames. Zh. Fiz. Khim., 12 (1938), 100–105.
- S.M. Zenkovskaya. Action of high-frequency vibration on filtration convection. J. Appl. Mech. Tech. Phys., 32 (1992), 83–86.
- S.M. Zenkovskaya T.N. Rogovenko. Filtration convection in a high-frequency vibration field. J. Appl. Mech. Tech. Phys., 40 (1999), 379–385.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.