Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process
Jean-Marc Azaïs; Christine Cierco-Ayrolles; Alain Croquette
ESAIM: Probability and Statistics (2010)
- Volume: 3, page 107-129
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topAzaïs, Jean-Marc, Cierco-Ayrolles, Christine, and Croquette, Alain. "Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process." ESAIM: Probability and Statistics 3 (2010): 107-129. <http://eudml.org/doc/197730>.
@article{Azaïs2010,
abstract = {
This paper uses the Rice method [18] to give bounds to
the distribution of the maximum of a smooth stationary Gaussian
process. We give simpler expressions of the first two terms of
the Rice series [3,13] for the distribution of the maximum.
Our main contribution is a simpler form of the second factorial moment
of the number of upcrossings which is in some sense a generalization
of Steinberg et al.'s formula
([7] p. 212).
Then, we present a numerical application and asymptotic expansions
that give a new interpretation of a result by
Piterbarg [15].
},
author = {Azaïs, Jean-Marc, Cierco-Ayrolles, Christine, Croquette, Alain},
journal = {ESAIM: Probability and Statistics},
keywords = {Asymptotic expansions; extreme values; stationary Gaussian process;
Rice series; upcrossings.},
language = {eng},
month = {3},
pages = {107-129},
publisher = {EDP Sciences},
title = {Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process},
url = {http://eudml.org/doc/197730},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Azaïs, Jean-Marc
AU - Cierco-Ayrolles, Christine
AU - Croquette, Alain
TI - Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 3
SP - 107
EP - 129
AB -
This paper uses the Rice method [18] to give bounds to
the distribution of the maximum of a smooth stationary Gaussian
process. We give simpler expressions of the first two terms of
the Rice series [3,13] for the distribution of the maximum.
Our main contribution is a simpler form of the second factorial moment
of the number of upcrossings which is in some sense a generalization
of Steinberg et al.'s formula
([7] p. 212).
Then, we present a numerical application and asymptotic expansions
that give a new interpretation of a result by
Piterbarg [15].
LA - eng
KW - Asymptotic expansions; extreme values; stationary Gaussian process;
Rice series; upcrossings.
UR - http://eudml.org/doc/197730
ER -
References
top- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972).
- R.J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, Ca (1990).
- J.-M. Azaïs and M. Wschebor, Une formule pour calculer la distribution du maximum d'un processus stochastique. C.R. Acad. Sci. Paris Ser. I Math.324 (1997) 225-230.
- J-M. Azaïs and M. Wschebor, The Distribution of the Maximum of a Stochastic Process and the Rice Method, submitted.
- C. Cierco, Problèmes statistiques liés à la détection et à la localisation d'un gène à effet quantitatif. PHD dissertation. University of Toulouse, France (1996).
- C. Cierco and J.-M. Azaïs, Testing for Quantitative Gene Detection in Dense Map, submitted.
- H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, J. Wiley & Sons, New-York (1967).
- D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models, and application to mixture models. ESAIM: Probab. Statist.1 (1997) 285-317.
- R.B. Davies, Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika64 (1977) 247-254.
- J. Ghosh and P. Sen, On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results, in Proc. of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Le Cam L.M. and Olshen R.A., Eds. (1985).
- M.F. Kratz and H. Rootzén, On the rate of convergence for extreme of mean square differentiable stationary normal processes. J. Appl. Prob.34 (1997) 908-923.
- M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New-York (1983).
- R.N. Miroshin, Rice series in the theory of random functions. Vestnik Leningrad Univ. Math.1 (1974) 143-155.
- M.B. Monagan, et al.Maple V Programming guide. Springer (1998).
- V.I. Piterbarg, Comparison of distribution functions of maxima of Gaussian processes. Theory Probab. Appl.26 (1981) 687-705.
- V.I. Piterbarg, Large deviations of random processes close to gaussian ones. Theory Probab. Appl.27 (1982) 504-524.
- V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society. Providence, Rhode Island (1996).
- S.O. Rice, Mathematical Analysis of Random Noise. Bell System Tech. J.23 (1944) 282-332; 24 (1945) 45-156.
- SPLUS, Statistical Sciences, S-PLUS Programmer's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc. (1993).
- J. Sun, Significance levels in exploratory projection pursuit. Biometrika78 (1991) 759-769.
- M. Wschebor, Surfaces aléatoires. Mesure géometrique des ensembles de niveau. Springer-Verlag, New-York, Lecture Notes in Mathematics1147 (1985).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.