Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations
ESAIM: Probability and Statistics (2011)
- Volume: 15, page S69-S84
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topYano, Kouji. "Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations." ESAIM: Probability and Statistics 15 (2011): S69-S84. <http://eudml.org/doc/197740>.
@article{Yano2011,
abstract = {
Wiener integral for the coordinate process
is defined under the σ-finite measure unifying Brownian penalisations,
which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs19. Mathematical Society of Japan, Tokyo (2009)].
Its decomposition before and after last exit time from 0
is studied.
This study prepares for the author's recent study [K. Yano,
J. Funct. Anal.258 (2010) 3492–3516] of Cameron-Martin formula
for the σ-finite measure.
},
author = {Yano, Kouji},
journal = {ESAIM: Probability and Statistics},
keywords = {Stochastic integral; Brownian motion;
Bessel process; penalisation},
language = {eng},
month = {5},
pages = {S69-S84},
publisher = {EDP Sciences},
title = {Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations},
url = {http://eudml.org/doc/197740},
volume = {15},
year = {2011},
}
TY - JOUR
AU - Yano, Kouji
TI - Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations
JO - ESAIM: Probability and Statistics
DA - 2011/5//
PB - EDP Sciences
VL - 15
SP - S69
EP - S84
AB -
Wiener integral for the coordinate process
is defined under the σ-finite measure unifying Brownian penalisations,
which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs19. Mathematical Society of Japan, Tokyo (2009)].
Its decomposition before and after last exit time from 0
is studied.
This study prepares for the author's recent study [K. Yano,
J. Funct. Anal.258 (2010) 3492–3516] of Cameron-Martin formula
for the σ-finite measure.
LA - eng
KW - Stochastic integral; Brownian motion;
Bessel process; penalisation
UR - http://eudml.org/doc/197740
ER -
References
top- A. Beck and D.P. Giesy, P-uniform convergence and a vector-valued strong law of large numbers. Trans. Amer. Math. Soc.147 (1970) 541–559. Zbl0198.51006
- T. Funaki, Y. Hariya and M. Yor, Wiener integrals for centered Bessel and related processes, II. ALEA Lat. Am. J. Probab. Math. Stat.1 (2006) 225–240 (electronic). Zbl1112.60042
- T. Funaki, Y. Hariya and M. Yor, Wiener integrals for centered powers of Bessel processes, I. Markov Process. Relat. Fields13 (2007) 21–56. Zbl1123.60035
- T. Funaki, Y. Hariya, F. Hirsch and M. Yor, On the construction of Wiener integrals with respect to certain pseudo-Bessel processes. Stoch. Process. Appl.116 (2006) 1690–1711. Zbl1110.60055
- T. Funaki, Y. Hariya, F. Hirsch and M. Yor, On some Fourier aspects of the construction of certain Wiener integrals. Stoch. Process. Appl.117 (2007) 1–22. Zbl1113.60055
- P. Gosselin and T. Wurzbacher, An Itô type isometry for loops in Rd via the Brownian bridge, in Séminaire de Probabilités XXXI. Lecture Notes in Math.1655, Springer, Berlin (1997) 225–231. Zbl0884.60046
- T. Jeulin and M. Yor, Inégalité de Hardy, semimartingales, et faux-amis, in Séminaire de Probabilités XIII (Univ. Strasbourg, Strasbourg, 1977-1978). Lecture Notes in Math.721, Springer, Berlin (1979) 332–359. Zbl0419.60049
- J. Najnudel, B. Roynette and M. Yor, A remarkable σ-finite measure on (, ) related to many Brownian penalisations. C. R. Math. Acad. Sci. Paris345 (2007) 459–466. Zbl1221.60003
- J. Najnudel, B. Roynette and M. Yor, A global view of Brownian penalisations. MSJ Memoirs19, Mathematical Society of Japan, Tokyo (2009). Zbl1180.60004
- B. Roynette and M. Yor, Penalising Brownian paths. Lecture Notes in Math.1969, Springer, Berlin (2009). Zbl1190.60002
- B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure. Jpn J. Math.1 (2006) 263–290.
- K. Yano, Cameron-Martin formula for the σ-finite measure unifying Brownian penalisations. J. Funct. Anal.258 (2010) 3492–3516. Zbl1194.60049
- K. Yano, Y. Yano and M. Yor, Penalising symmetric stable Lévy paths. J. Math. Soc. Jpn61 (2009) 757–798. Zbl1180.60008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.