Density Estimation for One-Dimensional Dynamical Systems
ESAIM: Probability and Statistics (2010)
- Volume: 5, page 51-76
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topPrieur, Clémentine. "Density Estimation for One-Dimensional Dynamical Systems." ESAIM: Probability and Statistics 5 (2010): 51-76. <http://eudml.org/doc/197744>.
@article{Prieur2010,
abstract = {
In this paper we prove a Central Limit Theorem for
standard kernel estimates of the invariant density of one-dimensional
dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence
for the variance of the estimator and a variation on the Lindeberg–Rio
method. We also give an extension in the case of weakly
dependent sequences in a sense introduced by Doukhan and Louhichi.
},
author = {Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {Dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem;
Central Limit Theorem; bias; nonparametric estimation; s-weakly and a-weakly dependent.},
language = {eng},
month = {3},
pages = {51-76},
publisher = {EDP Sciences},
title = {Density Estimation for One-Dimensional Dynamical Systems},
url = {http://eudml.org/doc/197744},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Prieur, Clémentine
TI - Density Estimation for One-Dimensional Dynamical Systems
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 51
EP - 76
AB -
In this paper we prove a Central Limit Theorem for
standard kernel estimates of the invariant density of one-dimensional
dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence
for the variance of the estimator and a variation on the Lindeberg–Rio
method. We also give an extension in the case of weakly
dependent sequences in a sense introduced by Doukhan and Louhichi.
LA - eng
KW - Dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem;
Central Limit Theorem; bias; nonparametric estimation; s-weakly and a-weakly dependent.
UR - http://eudml.org/doc/197744
ER -
References
top- A. Amroun, Systèmes dynamiques perturbés. Sur une classe de fonctions zéta dynamiques, Thèse de Doctorat de l'Université Paris 6, Spécialité Mathématique (1995).
- P. Ango Nze and P. Doukhan, Non-parametric Minimax estimation in a weakly dependent framework I: Quadratic properties. Math. Methods Statist.5-4 (1996) 404-423.
- V. Baladi, M. Benedicks and V. Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps. Ann. E.N.S. (to appear).
- A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180.
- D. Bosq and D. Guégan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Statist. Probab. Lett.25 (1995) 201-212.
- D. Bosq and J.P. Lecoutre, Théorie de l'estimation fonctionnelle. Collection ``Économie et statistiques avancées''. Série : École Nationale de la Statistique et de l'Administration Économique et Centre d'Études des Programmes Economiques''. Economica (1987).
- A. Broise, F. Dal'bo and M. Peigné, Études spectrales d'opérateurs de transfert et applications. Astérisque238 (1996) Société Math. de France.
- P. Collet, Some ergodic properties of maps of the interval, in dynamical systems, edited by R. Bamon, J.M. Gambaudo and S. Martinez. Hermann, Paris (1996).
- C. Coulon-Prieur and P. Doukhan, A triangular central limit Theorem under a new weak dependence condition. Statist. Probab. Lett.47 (2000) 61-68.
- W. De Melo and S. Van Strien, One-Dimensional Dynamics. Springer-Verlag (1993).
- P. Doukhan, Mixing: Properties and Examples. Springer Verlag, Lecture Notes in Statist.85 (1994).
- P. Doukhan, Models, Inequalities and Limit Theorems for Stationary Sequences, edited by P. Doukhan, G. Oppenheim and M. Taqqu. Birkhaüser (to appear).
- P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl.84 (1999) 313-342.
- P. Doukhan and S. Louhichi, Functional estimation of a density under a new weak dependence condition. Scand. J. Statist.28 (2001) 325-342.
- A. Lasota and M. Mackey, Probabilistic properties of deterministic systems. Cambridge University Press (1985).
- A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc.186 (1973) 481-488.
- C. Liverani, Decay of correlations for piecewise expanding maps. J. Statist. Phys.78 (1995) 1111-1129.
- C. Liverani, Central limit Theorem for deterministic systems, in Proc. of the international Congress on Dynamical Systems, Montevideo 95. Pittman, Res. Notes Math. (1997).
- J. Maës, Statistique non paramétrique des processus dynamiques réels en temps discret. Thèse de l'Université Paris 6 (1999).
- D. Pollard, Convergence of Stochastic Processes. Springer Verlag, Springer Ser. Statist. (1984).
- R. Prakasa, Nonparametric functional estimation. Academic Press, New York (1983).
- E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS1 (1995) 35-61.
- E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields104 (1996) 255-282.
- P.M. Robinson, Non parametric estimators for time series. J. Time Ser. Anal.4-3 (1983) 185-207.
- M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3 (1991).
- W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974).
- M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.