# Hoeffding spaces and Specht modules

Giovanni Peccati; Jean-Renaud Pycke

ESAIM: Probability and Statistics (2011)

- Volume: 15, page S58-S68
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topPeccati, Giovanni, and Pycke, Jean-Renaud. "Hoeffding spaces and Specht modules." ESAIM: Probability and Statistics 15 (2011): S58-S68. <http://eudml.org/doc/197767>.

@article{Peccati2011,

abstract = {
It is proved that each Hoeffding space associated with a random permutation
(or, equivalently, with extractions without replacement from a finite
population) carries an irreducible representation of the symmetric group,
equivalent to a two-block Specht module.
},

author = {Peccati, Giovanni, Pycke, Jean-Renaud},

journal = {ESAIM: Probability and Statistics},

keywords = {Exchangeability; finite population
statistics; Hoeffding decompositions; irreducible representations; random
permutations; Specht modules; symmetric group},

language = {eng},

month = {5},

pages = {S58-S68},

publisher = {EDP Sciences},

title = {Hoeffding spaces and Specht modules},

url = {http://eudml.org/doc/197767},

volume = {15},

year = {2011},

}

TY - JOUR

AU - Peccati, Giovanni

AU - Pycke, Jean-Renaud

TI - Hoeffding spaces and Specht modules

JO - ESAIM: Probability and Statistics

DA - 2011/5//

PB - EDP Sciences

VL - 15

SP - S58

EP - S68

AB -
It is proved that each Hoeffding space associated with a random permutation
(or, equivalently, with extractions without replacement from a finite
population) carries an irreducible representation of the symmetric group,
equivalent to a two-block Specht module.

LA - eng

KW - Exchangeability; finite population
statistics; Hoeffding decompositions; irreducible representations; random
permutations; Specht modules; symmetric group

UR - http://eudml.org/doc/197767

ER -

## References

top- D.J. Aldous, Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM1117, Springer, New York (1983).
- M. Bloznelis, Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput.14 (2005) 249–268. Zbl1080.60005
- M. Bloznelis and F. Götze, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat.29 (2001) 353–365. Zbl1012.62009
- M. Bloznelis and F. Götze, An Edgeworth expansion for finite population statistics. Ann. Probab.30 (2002) 1238–1265. Zbl1010.62017
- P. Diaconis, Group Representations in Probability and Statistics.IMS Lecture Notes – Monograph Series11, Hayward, California (1988). Zbl0695.60012
- J.J. Duistermaat and J.A.C. Kolk, Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997). Zbl0955.22001
- O. El-Dakkak and G. Peccati, Hoeffding decompositions and urn sequences. Ann. Probab.36 (2008) 2280–2310. Zbl1163.60015
- G.D. James, The representation theory of the symmetric groups. Lecture Notes in Math.682, Springer-Verlag, Berlin-Heidelberg-New York (1978). Zbl0393.20009
- G. Peccati, Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab.32 (2004) 1796–1829. Zbl1055.62060
- G. Peccati and J.-R. Pycke, Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl.54 (2010) 217–245. Zbl1229.60039
- B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001). Zbl0964.05070
- R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). Zbl0538.62002
- J.-P. Serre, Linear representations of finite groups, Graduate Texts Math.42, Springer, New York (1977).
- L. Zhao and X. Chen, Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica6 (1990) 263–272. Zbl0724.60024

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.