The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Hoeffding spaces and Specht modules”

Hoeffding spaces and Specht modules

Giovanni Peccati, Jean-Renaud Pycke (2011)

ESAIM: Probability and Statistics

Similarity:

It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.

The 3-state Potts model and Rogers-Ramanujan series

Alex Feingold, Antun Milas (2013)

Open Mathematics

Similarity:

We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra. ...

Rigidity of generalized Verma modules

Oleksandr Khomenko, Volodymyr Mazorchuk (2002)

Colloquium Mathematicae

Similarity:

We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).

On a definition for formations

Marco Barlotti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

By constructing appropriate faithful simple modules for the group GL(2,3), the author shows that certain "local" definitions for formations are not equivalent.