Identification des paramètres d'un processus gaussien fractionnaire

Jacques Istas

Journal de la société française de statistique (2000)

  • Volume: 141, Issue: 1-2, page 149-166
  • ISSN: 1962-5197

How to cite

top

Istas, Jacques. "Identification des paramètres d'un processus gaussien fractionnaire." Journal de la société française de statistique 141.1-2 (2000): 149-166. <http://eudml.org/doc/198619>.

@article{Istas2000,
author = {Istas, Jacques},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1-2},
pages = {149-166},
publisher = {Société française de statistique},
title = {Identification des paramètres d'un processus gaussien fractionnaire},
url = {http://eudml.org/doc/198619},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Istas, Jacques
TI - Identification des paramètres d'un processus gaussien fractionnaire
JO - Journal de la société française de statistique
PY - 2000
PB - Société française de statistique
VL - 141
IS - 1-2
SP - 149
EP - 166
LA - fre
UR - http://eudml.org/doc/198619
ER -

References

top
  1. [Ayache et Lévy-Vehel (1999)] AYACHE et LÉVY-VEHEL (1999). Generalized Multifractional Brownian Motion: definition and preliminary results. In. M. Dekking, J. Vehel, E. Lutton and C. Tricot (eds) Fractals : Theory and Application in Engineering. Springer-Verlag, 17-32. Zbl0964.60046MR1726365
  2. [Ayache et Lévy-Vehel (2000)] AYACHE et LÉVY-VEHEL (2000). The generalized multifractional brownian motion. Stat. Inf. Stoc. Proc. (A paraître). Zbl0979.60023
  3. [Bachelier (1900)] BACHELIER, L. (1900). Théorie de la spéculation. Gautier-Villars, Paris. Zbl31.0075.12JFM31.0075.12
  4. [Benassi et al. (1996)] BENASSI, A., JAFFARD, S. et ROUX, D. (1996). Gaussian Processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoamericana. 13 (1) 19-90. Zbl0880.60053
  5. [Benassi et al. (1998a)] BENASSI, A., COHEN, S., ISTAS, J. et JAFFARD, S. ( 1998a). Identification of Filtered White Noises. Stock. Proc. Appl. 75 31-49. Zbl0932.60037MR1629014
  6. [Benassi et al. (1998b)] BENASSI, A., COHEN, S., ISTAS, J. ( 1998b). Identifying the multifractional function of a Gaussian proces. Stat. and Proba. Letters. 39 337-345. Zbl0931.60022MR1646220
  7. [Benassi et al. (2000)] BENASSI A., BERTRAND, P., COHEN, S., et ISTAS, J. (2000). Identification of the Hurst index of a Step Fractional Brownian Motion. Stat. Inf. Stoc. Proc, Vol. 3, Issue 1/2, p. 101-111. Zbl0982.60081MR1819289
  8. [Benassi et Istas (2001)] BENASSI et ISTAS, J. (2001). Processus autosimilaires. Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Vehel Eds., Hermès (A paraître). 
  9. [Beran (1994)] BERAN, J. (1994). Statistics for long memory process. Chapman and Hall. Zbl0869.60045MR1304490
  10. [Bertrand (2000)] BERTRAND, P.; (2000). A local method for estimating change points: the hat-function. Statistics, Vol. 34, n° 3, p. 215-235. Zbl0955.62031MR1802728
  11. [Black et Scholes (1973)] BLACK, F. et SCHOLES, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 81 7-54. Zbl1092.91524
  12. [Cœurjolly (2000a)] CŒURJOLLY, J.-F. ( 2000a). Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. (à paraître). Zbl0984.62058
  13. [Cœurjolly (2000b)] CŒURJOLLY, J.-F. ( 2000b). Simulation et identification of the fractional brownian motion: a bibliographical and comparative study. J. Stat. Software, Vol. 5. 
  14. [Cœurjolly et Istas (2000)] CŒURJOLLY, J.-F. et ISTAS, J. (2000). Cramer-Rao bounds for Fractional Brownian Motions. Stat. and Proba. Letters. Zbl1092.62574
  15. [Cohen (1999)] COHEN, S. (1999). From self-similarity to local self-similiraty: the estimation problem. In Fractals : Theory and Applications in Engineering, 3-16. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot Eds, Springer Verlag. Zbl0965.60073MR1726364
  16. [Cohen (2001)] COHEN, S. (2001). Processus localement auto-similaires. in Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Véhel Eds., Hermès (A paraître). 
  17. [Dalhaus (1989)] DAHLHAUS, R. (1989). Efficient parameter estimation for self-similar processes. Ann Statist. 17 (4) 1749-1766. Zbl0703.62091MR1026311
  18. [Grenander (1981)] GRENANDER, U. (1981). Abstract inference. Wiley, New York. Zbl0505.62069MR599175
  19. [Guyon et Léon (1989)] GUYON, X. (1989). Convergence en loi des h-variations d'un processus gaussien stationnaire. Ann Inst. Poincaré. 25 265-282. Zbl0691.60017MR1023952
  20. [Hall et al. (1994)] HALL, P., WOOD, A. et FEUERVERGER (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 6 587-606. Zbl0815.62060MR1312323
  21. [Hall et Wood (1993)] HALL, P., WOOD, A. (1993). On the performance of box-counting estimators of fractal dimension. Biometrika. 80 246-252. Zbl0769.62062MR1225230
  22. [Istas (1996)] ISTAS, J.Estimating the singularity function of a gaussian process with applications. Scand. J. Statist. 23 (5) 581-596. Zbl0898.62106MR1439713
  23. [Istas et Lang (1994)] ISTAS, J. et LANG, G. (1994). Variations quadratiques et estimation de l'exposant de Holder local d'un processus gaussien. Cr. Acad. Sc. Paris, Série I. 319 201-206. Zbl0803.60038MR1288403
  24. [Istas et Lang (1997)] ISTAS, J. et LANG, G. (1997). Quadratic variations and estimation of the Holder index of a gaussian process. Ann. Inst. Poincaré 33 (4) 407-436. Zbl0882.60032MR1465796
  25. [Kolmogorov (1940)] KOLMOGOROV, A. (1940). Wienersche und einige andere interessante Kurcen im Hilbertsche Raum. (German). C; R. (Dokl) Acad. Sci. URSS.26 115-118. Zbl0022.36001MR3441JFM66.0552.03
  26. [Léger et Pontier (1999)] LÉGER, S. et PONTIER, M. (1999). Drap Brownien fractionnaire. C.R. Acad. Sc. Paris, Série I. 329 893-898. Zbl0945.60047MR1728004
  27. [Mandelbrot et Van Ness (1968)] MANDELBROT, J. et VAN NESS, J. (1968). Fractional Brownian Motions, Fractional Noises and Applications. SIA M Review. 10 422-437. Zbl0179.47801MR242239
  28. [Meyer (1990)] MEYER, Y. (1990). Ondelettes et Opérateurs. volume 1. Hermann, Paris. Zbl0694.41037MR1085487
  29. [Neveu (1968)] NEVEU, J. (1968). Processus alatoires gaussiens. Presses de l'Université de Montréal, SMS. Zbl0192.54701MR272042
  30. [Peltier et Lévy-Véhel (1994)] PELTIER, R. et LéVY-VéHEL, J. (1994). A new method for estimating the parameter of fractional brownian motion. Rapport de recherches 2396, 1-40, disponible sur http://www-syntim.inria.fr/fractales/. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.