Real harmonizable multifractional Lévy motions
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 3, page 259-277
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLacaux, Céline. "Real harmonizable multifractional Lévy motions." Annales de l'I.H.P. Probabilités et statistiques 40.3 (2004): 259-277. <http://eudml.org/doc/77810>.
@article{Lacaux2004,
author = {Lacaux, Céline},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Local asymptotic self-similarity; Multifractional function; Identification},
language = {eng},
number = {3},
pages = {259-277},
publisher = {Elsevier},
title = {Real harmonizable multifractional Lévy motions},
url = {http://eudml.org/doc/77810},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Lacaux, Céline
TI - Real harmonizable multifractional Lévy motions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 3
SP - 259
EP - 277
LA - eng
KW - Local asymptotic self-similarity; Multifractional function; Identification
UR - http://eudml.org/doc/77810
ER -
References
top- [1] A. Ayache, A. Benassi, S. Cohen, J. Lévy Véhel, Regularity and identification of generalized multifractional gaussian process, Séminaire de Probabilités (2004), submitted for publication. Zbl1076.60026MR2126981
- [2] A. Ayache, J. Lévy Véhel, The generalized multifractional Brownian motion, Stat. Inference Stoch. Process.3 (1–2) (2000) 7-18, 19th Rencontres Franco–Belges de Statisticiens, Marseille, 1998. Zbl0979.60023
- [3] A. Ayache, J. Lévy Véhel, Identification de l'exposant de Hölder ponctuel d'un Mouvement Brownien Multifractionnaire Généralisé, Technical Report LSP-2002-02, Laboratoire de Statistique et de Probabilités, UMR C5583, Université Paul Sabatier, 2002.
- [4] A. Benassi, P. Bertrand, S. Cohen, J. Istas, Identification of the Hurst index of a step fractional Brownian motion, Stat. Inference Stoch. Process.3 (1–2) (2000) 101-111, 19th Rencontres Franco–Belges de Statisticiens, Marseille, 1998. Zbl0982.60081
- [5] A. Benassi, S. Cohen, J. Istas, Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett.39 (1998) 337-345. Zbl0931.60022MR1646220
- [6] A. Benassi, S. Cohen, J. Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli8 (1) (2002) 97-115. Zbl1005.60052MR1884160
- [7] A. Benassi, S. Cohen, J. Istas, S. Jaffard, Identification of filtered white noises, Stoch. Process. Appl.75 (1998) 31-49. Zbl0932.60037MR1629014
- [8] A. Benassi, S. Jaffard, D. Roux, Gaussian processes and pseudodifferential elliptic operators, Revista Mathematica Iberoamericana13 (1) (1997) 19-89. Zbl0880.60053MR1462329
- [9] H. Cramér, M.R. Leadbetter, Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications, Wiley, New York, 1967. Zbl0162.21102MR217860
- [10] J. Istas, G. Lang, Quadratic variations and estimation of the local Holder index of a gaussian process, Ann. Inst. Poincaré33 (4) (1997) 407-437. Zbl0882.60032MR1465796
- [11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. PAMI11 (1989) 674-693. Zbl0709.94650
- [12] B. Mandelbrot, J.V. Ness, Fractional brownian motion, fractionnal noises and applications, Siam Rev.10 (1968) 422-437. Zbl0179.47801MR242239
- [13] R. Peltier, J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, available on , http://www-syntim.inria.fr/fractales/.
- [14] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
- [15] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998. Zbl0910.62001MR1652247
- [16] B. Vidakovic, Statistical Modeling by Wavelets, Wiley, New York, 1999, a Wiley-Interscience Publication. Zbl0924.62032MR1681904
Citations in EuDML Documents
top- Serge Cohen, Renaud Marty, Invariance principle, multifractional gaussian processes and long-range dependence
- Jacques Istas, Multifractional brownian fields indexed by metric spaces with distances of negative type
- Jacques Istas, Manifold indexed fractional fields
- Jacques Istas, Manifold indexed fractional fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.