Modular forms and class number congruences

Antone Costa

Acta Arithmetica (1992)

  • Volume: 61, Issue: 2, page 101-118
  • ISSN: 0065-1036

How to cite

top

Antone Costa. "Modular forms and class number congruences." Acta Arithmetica 61.2 (1992): 101-118. <http://eudml.org/doc/206454>.

@article{AntoneCosta1992,
author = {Antone Costa},
journal = {Acta Arithmetica},
keywords = {class number of CM fields; congruences},
language = {eng},
number = {2},
pages = {101-118},
title = {Modular forms and class number congruences},
url = {http://eudml.org/doc/206454},
volume = {61},
year = {1992},
}

TY - JOUR
AU - Antone Costa
TI - Modular forms and class number congruences
JO - Acta Arithmetica
PY - 1992
VL - 61
IS - 2
SP - 101
EP - 118
LA - eng
KW - class number of CM fields; congruences
UR - http://eudml.org/doc/206454
ER -

References

top
  1. [1] Y. Amice et J. Fresnel, Fonctions zêta p-adiques des corps de nombres abéliens réels, Acta Arith. 20 (1972), 353-384. Zbl0217.04303
  2. [2] P. Barrucand and H. Cohn, Note on primes of type x²+32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. Zbl0207.36202
  3. [3] H. Cohn and G. Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377. Zbl0299.12004
  4. [4] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389. Zbl0651.12010
  5. [5] P. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Scientific, 1988. Zbl0743.11061
  6. [6] A. Costa, Modular forms and class number congruences, Ph.D. thesis, University of Pennsylvania, 1989. 
  7. [7] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. Zbl0434.12009
  8. [8] P.-J. Desnoux, Congruences dyadiques entre nombres de classes de corps quadratiques, Manuscripta Math. 62 (1988), 163-179. Zbl0664.12002
  9. [9] G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith. 52 (1989), 147-162. Zbl0618.12004
  10. [10] K. Hardy and K. Williams, Congruences modulo 16 for the class numbers of complex quadratic fields, J. Number Theory 27 (1989), 178-195. Zbl0622.12005
  11. [11] M. Hikita, On the congruences for the class numbers of the quadratic fields whose discriminants are divisible by 8, J. Number Theory 23 (1986), 86-101. Zbl0587.12002
  12. [12] P. Kaplan, Unités de norme -1 de Q(√p) et corps de classes de degré 8 de Q(√-p) où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243. Zbl0357.12010
  13. [13] --, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 284 (1976), 313-363. Zbl0337.12003
  14. [14] E. Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48. Zbl0222.12007
  15. [15] R. Pioui, Mesures de Haar p-adiques et interprétation arithmétique de 1/2 L₂(χ,s) - 1/2 L₂(χ,t), s,t∈ ℚ₂ (χ quadratique), Ph.D. thesis, Université de Franche-Comté, Besançon 1990. 
  16. [16] A. Pizer, On the 2-part of the class number of imaginary quadratic number fields, J. Number Theory 8 (1976), 184-192. Zbl0329.12003
  17. [17] L. Rédei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I, J. Reine Angew. Math. 180 (1939), 1-43. Zbl0021.00701
  18. [18] J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one , Invent. Math. 74 (1983), 1-42. Zbl0523.12009
  19. [19] J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic Number Fields, Academic Press, London 1977, 193-268. 
  20. [20] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679. Zbl0394.10015
  21. [21] P. Stevenhagen, Class groups and governing fields, Ph.D. thesis, University of California at Berkeley, 1988. Zbl0701.11056
  22. [22] T. Uehara, On linear congruence relations between class numbers of quadratic fields, J. Number Theory 34 (1990), 362-392. Zbl0693.12006
  23. [23] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982. 
  24. [24] K. S. Williams, On the class number of Q(√-p) modulo 16, for p≡ 1(mod 8) a prime , Acta Arith. 39 (1981), 381-398. Zbl0393.12008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.