On values of L-functions of totally real algebraic number fields at integers

Shigeaki Tsuyumine

Acta Arithmetica (1996)

  • Volume: 76, Issue: 4, page 359-392
  • ISSN: 0065-1036

How to cite

top

Shigeaki Tsuyumine. "On values of L-functions of totally real algebraic number fields at integers." Acta Arithmetica 76.4 (1996): 359-392. <http://eudml.org/doc/206904>.

@article{ShigeakiTsuyumine1996,
author = {Shigeaki Tsuyumine},
journal = {Acta Arithmetica},
keywords = {special values of -functions; Eisenstein series; Hilbert modular forms; identities for divisor sums; relative class numbers; representation numbers},
language = {eng},
number = {4},
pages = {359-392},
title = {On values of L-functions of totally real algebraic number fields at integers},
url = {http://eudml.org/doc/206904},
volume = {76},
year = {1996},
}

TY - JOUR
AU - Shigeaki Tsuyumine
TI - On values of L-functions of totally real algebraic number fields at integers
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 4
SP - 359
EP - 392
LA - eng
KW - special values of -functions; Eisenstein series; Hilbert modular forms; identities for divisor sums; relative class numbers; representation numbers
UR - http://eudml.org/doc/206904
ER -

References

top
  1. [1] A. G. van Asch, Modular forms of half-integral weight, some explicit arithmetic, Math. Ann. 262 (1983), 77-89. Zbl0508.10015
  2. [2] A. O. L. Atkin and J. Lehner, Hecke operator on Γ₀(m), Math. Ann. 185 (1970), 134-160. 
  3. [3] P. Bachmann, Die Arithmetik von quadratischen Formen, part I, Leipzig, 1898. 
  4. [4] P. T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70-101. Zbl0043.04603
  5. [5] H. Cohen, Variations sur un thème de Siegel et Hecke, Acta Arith. 30 (1976), 63-93. Zbl0291.10021
  6. [6] A. Costa, Modular forms and class number congruence, Acta Arith. 61 (1992), 101-118. Zbl0773.11066
  7. [7] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. Zbl0434.12009
  8. [8] H. J. Godwin, Real quartic fields with small discriminant, J. London Math. Soc. 31 (1956), 478-485. Zbl0071.03401
  9. [9] H. G. Grundman, The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields, J. Number Theory 37 (1991), 343-365. Zbl0715.11023
  10. [10] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, Berlin, 1985. 
  11. [11] E. Hecke, Theorie der Eisensteinschen Reihen höhere Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224. Zbl53.0345.02
  12. [12] E. Hecke, Über die L-funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Nachr. Gesell. Wiss. Göttingen 1917, 299-318. Zbl46.0256.03
  13. [13] H. Hida, On the values of Hecke's L-functions at nonpositive integers, J. Math. Soc. Japan 30 (1978), 249-278. Zbl0371.12014
  14. [14] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), 385-401. Zbl0606.10017
  15. [15] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77. 
  16. [16] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1994), 1125-1153. Zbl0776.11071
  17. [17] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Invent. Math. 75 (1984), 283-299. Zbl0533.10021
  18. [18] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679. Zbl0394.10015
  19. [19] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo 23 (1976), 393-417. Zbl0349.12007
  20. [20] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen, 1969, 87-102. Zbl0186.08804
  21. [21] S. Tsuyumine, Cusp forms for Γ₀(p) of weight 2, Bull. Fac. Ed. Mie Univ. 45 (1994), 7-25. 
  22. [22] S. Tsuyumine, Evaluation of zeta functions of totally real algebraic number fields at non-positive integers, preprint. Zbl0899.11020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.