Nets obtained from rational functions over finite fields

Gerhard Larcher

Acta Arithmetica (1993)

  • Volume: 63, Issue: 1, page 1-13
  • ISSN: 0065-1036

How to cite

top

Gerhard Larcher. "Nets obtained from rational functions over finite fields." Acta Arithmetica 63.1 (1993): 1-13. <http://eudml.org/doc/206504>.

@article{GerhardLarcher1993,
author = {Gerhard Larcher},
journal = {Acta Arithmetica},
keywords = {uniform distribution of sequences; nonarchimedean diophantine approximation; good-lattice-point-sequences; discrepancy},
language = {eng},
number = {1},
pages = {1-13},
title = {Nets obtained from rational functions over finite fields},
url = {http://eudml.org/doc/206504},
volume = {63},
year = {1993},
}

TY - JOUR
AU - Gerhard Larcher
TI - Nets obtained from rational functions over finite fields
JO - Acta Arithmetica
PY - 1993
VL - 63
IS - 1
SP - 1
EP - 13
LA - eng
KW - uniform distribution of sequences; nonarchimedean diophantine approximation; good-lattice-point-sequences; discrepancy
UR - http://eudml.org/doc/206504
ER -

References

top
  1. [1] E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140-151. Zbl0105.04603
  2. [2] N. M. Korobov, The approximate computation on multiple integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207-1210 (in Russian). Zbl0089.04201
  3. [3] N. M. Korobov, Number-theoretical Methods in Approximate Analysis, Fizmatgiz, Moscow 1963 (in Russian). 
  4. [4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974. 
  5. [5] G. Larcher, On the distribution of sequences connected with good lattice points, Monatsh. Math. 101 (1986), 135-150. Zbl0584.10030
  6. [6] H. Niederreiter, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978), 203-219. Zbl0395.10053
  7. [7] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. Zbl0626.10045
  8. [8] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70. Zbl0651.10034
  9. [9] H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143-166. 
  10. [10] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79. Zbl0057.28604
  11. [11] W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50. Zbl0244.10035

NotesEmbed ?

top

You must be logged in to post comments.