The √p Riemann surface
Acta Arithmetica (1993)
- Volume: 63, Issue: 3, page 255-266
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMark Sheingorn. "The √p Riemann surface." Acta Arithmetica 63.3 (1993): 255-266. <http://eudml.org/doc/206520>.
@article{MarkSheingorn1993,
author = {Mark Sheingorn},
journal = {Acta Arithmetica},
keywords = {Riemann surfaces; Pell equation; geodesics; continued fractions; congruence classes mod ; reflections},
language = {eng},
number = {3},
pages = {255-266},
title = {The √p Riemann surface},
url = {http://eudml.org/doc/206520},
volume = {63},
year = {1993},
}
TY - JOUR
AU - Mark Sheingorn
TI - The √p Riemann surface
JO - Acta Arithmetica
PY - 1993
VL - 63
IS - 3
SP - 255
EP - 266
LA - eng
KW - Riemann surfaces; Pell equation; geodesics; continued fractions; congruence classes mod ; reflections
UR - http://eudml.org/doc/206520
ER -
References
top- [1] M. Akbas and D. Singerman, Symmetries of modular surfaces, preprint.
- [2] N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Ann. of Math. (2) 56 (1952), 479-493. Zbl0049.30605
- [3] L. K. Hua, Introduction to Number Theory, Springer, New York 1981.
- [4] R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory Dynamical Systems 2 (1982), 69-83. Zbl0497.10007
- [5] R. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions, and reduced ideals, in: Canadian Number Theory Association Conference Proceedings (Banff, 1988), R. Mollin (ed.), W. de Gruyter, Berlin 1990, 417-425.
- [6] R. Ruedy, Symmetric embeddings of Riemann surfaces, in: Discontinuous Groups and Riemann Surfaces, Proc. Conf. (Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud. 79, Princeton Univ. Press, Princeton, N.J., 1974, 409-418.
- [7] M. Sheingorn, Hyperbolic reflections on Pell's equation, J. Number Theory 33 (1989), 267-285. Zbl0692.10019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.