The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
We prove that a foliation on with hyperbolic singularities and with “many" parabolic leaves (i.e. leaves without Green functions) is in fact a linear foliation. This is done in two steps: first we prove that there exists an algebraic leaf, using the technique of harmonic measures, then we show that the holonomy of this leaf is linearizable, from which the result follows easily.
In this paper we study the 5 families of genus 3 compact Riemann surfaces which are normal coverings of the Riemann sphere branched over 4 points from very different aspects: their moduli spaces, the uniform Belyi functions that factorize through the quotient by the automorphism groups and the Weierstrass points of the non hyperelliptic families.
The famous theorem of Belyi states that the compact Riemann surface X can be defined over the number field if and only if X can be uniformized by a finite index subgroup Γ of a Fuchsian triangle group Λ. As a result such surfaces are now called Belyi surfaces. The groups PSL(2,q),q=p n are known to act as the groups of automorphisms on such surfaces. Certain aspects of such actions have been extensively studied in the literature. In this paper, we deal with symmetries. Singerman showed, using acertain...
We obtain short and unified new proofs of two recent characterizations of hyperellipticity given by Maskit (2000) and Schaller (2000), as well as a way of establishing a relation between them.
Currently displaying 1 –
20 of
36