Une nouvelle minoration de |logα - β|, |α - expβ|, α et β algébriques

Guy Diaz

Acta Arithmetica (1993)

  • Volume: 64, Issue: 1, page 43-57
  • ISSN: 0065-1036

How to cite

top

Guy Diaz. "Une nouvelle minoration de |logα - β|, |α - expβ|, α et β algébriques." Acta Arithmetica 64.1 (1993): 43-57. <http://eudml.org/doc/206534>.

@article{GuyDiaz1993,
author = {Guy Diaz},
journal = {Acta Arithmetica},
keywords = {explicit lower bounds; transcendence measure; logarithms; exponentials},
language = {fre},
number = {1},
pages = {43-57},
title = {Une nouvelle minoration de |logα - β|, |α - expβ|, α et β algébriques},
url = {http://eudml.org/doc/206534},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Guy Diaz
TI - Une nouvelle minoration de |logα - β|, |α - expβ|, α et β algébriques
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 1
SP - 43
EP - 57
LA - fre
KW - explicit lower bounds; transcendence measure; logarithms; exponentials
UR - http://eudml.org/doc/206534
ER -

References

top
  1. [Ch] G. V. Chudnovsky, Contributions to the Theory of Transcendental Numbers, Math. Surveys Monographs 19, Amer. Math. Soc., 1984. 
  2. [Ci] P. L. Cijsouw, Transcendence measures of exponentials and logarithms of algebraic numbers, Compositio Math. 28 (1974), 163-178. Zbl0284.10013
  3. [Di] G. Diaz, Complément à : Sur l'approximation de π par des nombres algébriques particuliers, Compositio Math. 79 (1991), 255-270. Zbl0734.11038
  4. [Du] A. Durand, Simultaneous diophantine approximations and Hermite's method, Bull. Austral. Math. Soc. 21 (1980), 463-470. Zbl0421.10020
  5. [F] N. I. Feldman, On the problem of the measure of transcendence of e, Uspekhi Mat. Nauk 18 (3) (1963), 207-213 (in Russian). 
  6. [FS] N. I. Feldman and A. B. Shidlovskiĭ, The development and present state of the theory of transcendental numbers, Russian Math. Surveys 22 (3) (1967), 1-79. 
  7. [G] A. I. Galochkin, On the diophantine approximation of values of the exponential function and of solutions of some transcendental equations, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1972 (3), 16-23. 
  8. [M1] K. Mahler, Zur approximation der Exponentialfunktion und der Logarithmus, J. Reine Angew. Math. 166 (1932), 118-150. Zbl0003.38805
  9. [M2] K. Mahler, Lectures on Transcendental Numbers, Lecture Notes in Math. 546, Springer, 1976. 
  10. [P] P. Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986), 355-383; errata et addenda, Bull. Soc. Math. France 115 (1987), 397-398. Zbl0617.14001
  11. [R] K. Ramachandra, An easy transcendence measure for e, J. Indian Math. Soc. 51 (1987), 111-116. Zbl0669.10058
  12. [S] T. Schneider, Introduction aux nombres transcendants, Gauthier-Villars, 1959. Zbl0098.26304
  13. [W1] M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283. Zbl0357.10017
  14. [W2] M. Waldschmidt, Transcendence measures for exponentials and logarithms, J. Austral. Math. Soc. Ser. A 25 (1978), 445-465. Zbl0388.10022
  15. [W3] M. Waldschmidt, Transcendance et exponentielles en plusieurs variables, Invent. Math. 63 (1981), 97-127. Zbl0454.10020
  16. [W4] M. Waldschmidt, Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques, Sem. Théorie des Nombres de Bordeaux 3 (1991), 129-185. Zbl0733.11020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.