Descent via isogeny in dimension 2

E. V. Flynn

Acta Arithmetica (1994)

  • Volume: 66, Issue: 1, page 23-43
  • ISSN: 0065-1036

How to cite

top

E. V. Flynn. "Descent via isogeny in dimension 2." Acta Arithmetica 66.1 (1994): 23-43. <http://eudml.org/doc/206590>.

@article{E1994,
author = {E. V. Flynn},
journal = {Acta Arithmetica},
keywords = {2-descent; Jacobian of curves},
language = {eng},
number = {1},
pages = {23-43},
title = {Descent via isogeny in dimension 2},
url = {http://eudml.org/doc/206590},
volume = {66},
year = {1994},
}

TY - JOUR
AU - E. V. Flynn
TI - Descent via isogeny in dimension 2
JO - Acta Arithmetica
PY - 1994
VL - 66
IS - 1
SP - 23
EP - 43
LA - eng
KW - 2-descent; Jacobian of curves
UR - http://eudml.org/doc/206590
ER -

References

top
  1. [1] J. B. Bost et J.-F. Mestre, Moyenne arithmético-géometrique et périodes des courbes de genre 1 et 2, Gaz. Math. 38 (1988), 36-64. 
  2. [2] J. W. S. Cassels, Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52-59. Zbl0090.03005
  3. [3] J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, Vol. 1, Arithmetic, Birkhäuser, Boston, 1983, 29-60. 
  4. [4] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24, Cambridge University Press, 1991. 
  5. [5] C. Chabauty, Sur les points rationnels des variétés algébriques dont l'irregularité et supérieur à la dimension, C. R. Acad. Sci. Paris 212 (1941), 882-885. Zbl67.0105.01
  6. [6] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765-780. Zbl0588.14015
  7. [7] E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc. 107 (1990), 425-441. Zbl0723.14023
  8. [8] E. V. Flynn, The group law on the Jacobian of a curve of genus 2, J. Reine Angew. Math., to appear. Zbl0765.14014
  9. [9] D. M. Gordon and D. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus 2, Trans. Amer. Math. Soc., to appear. Zbl0790.14028
  10. [10] D. Grant, Formal groups in genus 2, J. Reine Angew. Math. 411 (1990), 96-121. Zbl0702.14025
  11. [11] W. G. McCallum, The arithmetic of Fermat curves, Math. Ann. 294 (1992), 503-511. Zbl0766.14013
  12. [12] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986 Zbl0585.14026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.