Canonical heights on the Jacobians of curves of genus 2 and the infinite descent
Acta Arithmetica (1997)
- Volume: 79, Issue: 4, page 333-352
- ISSN: 0065-1036
Access Full Article
topHow to cite
topE. V. Flynn, and N. P. Smart. "Canonical heights on the Jacobians of curves of genus 2 and the infinite descent." Acta Arithmetica 79.4 (1997): 333-352. <http://eudml.org/doc/206982>.
@article{E1997,
author = {E. V. Flynn, N. P. Smart},
journal = {Acta Arithmetica},
keywords = {curves of genus two; Jacobians; canonical height; infinite descent; Mordell-Weil group; algorithm},
language = {eng},
number = {4},
pages = {333-352},
title = {Canonical heights on the Jacobians of curves of genus 2 and the infinite descent},
url = {http://eudml.org/doc/206982},
volume = {79},
year = {1997},
}
TY - JOUR
AU - E. V. Flynn
AU - N. P. Smart
TI - Canonical heights on the Jacobians of curves of genus 2 and the infinite descent
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 4
SP - 333
EP - 352
LA - eng
KW - curves of genus two; Jacobians; canonical height; infinite descent; Mordell-Weil group; algorithm
UR - http://eudml.org/doc/206982
ER -
References
top- [1] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24, Cambridge University Press, 1991. Zbl0752.14033
- [2] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge University Press, 1996. Zbl0857.14018
- [3] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. Zbl0758.14042
- [4] E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Proc. Cambridge Philos. Soc. 107 (1990), 425-441. Zbl0723.14023
- [5] E. V. Flynn, The group law on the Jacobian of a curve of genus 2, J. Reine Angew. Math. 439 (1993), 45-69. Zbl0765.14014
- [6] E. V. Flynn, Descent via isogeny in dimension 2, Acta Arith. 66 (1994), 23-43. Zbl0835.14009
- [7] E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015. Zbl0864.11033
- [8] E. V. Flynn, B. Poonen, and E. F. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2 curve, preprint, 1996. Zbl0958.11024
- [9] B. Gross, Local heights on curves, in: Arithmetic Geometry, G. Cornell and J. H. Silverman (eds.), Springer, 1986, 327-339.
- [10] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
- [11] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University Press, 1989.
- [12] E. F. Schaefer, 2-descent on the Jacobians of hyperelliptic curves, J. Number Theory 51 (1995), 219-232. Zbl0832.14016
- [13] E. F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), 79-114. Zbl0859.11034
- [14] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. Zbl0852.11028
- [15] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. Zbl0585.14026
- [16] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. Zbl0656.14016
- [17] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
- [18] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994. Zbl0911.14015
- [19] J. H. Silverman, Computing canonical heights with little (or no) factorization, preprint, 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.