Canonical heights on the Jacobians of curves of genus 2 and the infinite descent

E. V. Flynn; N. P. Smart

Acta Arithmetica (1997)

  • Volume: 79, Issue: 4, page 333-352
  • ISSN: 0065-1036

How to cite

top

E. V. Flynn, and N. P. Smart. "Canonical heights on the Jacobians of curves of genus 2 and the infinite descent." Acta Arithmetica 79.4 (1997): 333-352. <http://eudml.org/doc/206982>.

@article{E1997,
author = {E. V. Flynn, N. P. Smart},
journal = {Acta Arithmetica},
keywords = {curves of genus two; Jacobians; canonical height; infinite descent; Mordell-Weil group; algorithm},
language = {eng},
number = {4},
pages = {333-352},
title = {Canonical heights on the Jacobians of curves of genus 2 and the infinite descent},
url = {http://eudml.org/doc/206982},
volume = {79},
year = {1997},
}

TY - JOUR
AU - E. V. Flynn
AU - N. P. Smart
TI - Canonical heights on the Jacobians of curves of genus 2 and the infinite descent
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 4
SP - 333
EP - 352
LA - eng
KW - curves of genus two; Jacobians; canonical height; infinite descent; Mordell-Weil group; algorithm
UR - http://eudml.org/doc/206982
ER -

References

top
  1. [1] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24, Cambridge University Press, 1991. Zbl0752.14033
  2. [2] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge University Press, 1996. Zbl0857.14018
  3. [3] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. Zbl0758.14042
  4. [4] E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Proc. Cambridge Philos. Soc. 107 (1990), 425-441. Zbl0723.14023
  5. [5] E. V. Flynn, The group law on the Jacobian of a curve of genus 2, J. Reine Angew. Math. 439 (1993), 45-69. Zbl0765.14014
  6. [6] E. V. Flynn, Descent via isogeny in dimension 2, Acta Arith. 66 (1994), 23-43. Zbl0835.14009
  7. [7] E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015. Zbl0864.11033
  8. [8] E. V. Flynn, B. Poonen, and E. F. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2 curve, preprint, 1996. Zbl0958.11024
  9. [9] B. Gross, Local heights on curves, in: Arithmetic Geometry, G. Cornell and J. H. Silverman (eds.), Springer, 1986, 327-339. 
  10. [10] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
  11. [11] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University Press, 1989. 
  12. [12] E. F. Schaefer, 2-descent on the Jacobians of hyperelliptic curves, J. Number Theory 51 (1995), 219-232. Zbl0832.14016
  13. [13] E. F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), 79-114. Zbl0859.11034
  14. [14] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. Zbl0852.11028
  15. [15] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. Zbl0585.14026
  16. [16] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. Zbl0656.14016
  17. [17] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
  18. [18] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994. Zbl0911.14015
  19. [19] J. H. Silverman, Computing canonical heights with little (or no) factorization, preprint, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.