On extremal sets without coprimes

Rudolf Ahlswede; Levon H. Khachatrian

Acta Arithmetica (1994)

  • Volume: 66, Issue: 1, page 89-99
  • ISSN: 0065-1036

How to cite

top

Rudolf Ahlswede, and Levon H. Khachatrian. "On extremal sets without coprimes." Acta Arithmetica 66.1 (1994): 89-99. <http://eudml.org/doc/206594>.

@article{RudolfAhlswede1994,
author = {Rudolf Ahlswede, Levon H. Khachatrian},
journal = {Acta Arithmetica},
keywords = {extremal sets; coprimes; Erdös conjecture},
language = {eng},
number = {1},
pages = {89-99},
title = {On extremal sets without coprimes},
url = {http://eudml.org/doc/206594},
volume = {66},
year = {1994},
}

TY - JOUR
AU - Rudolf Ahlswede
AU - Levon H. Khachatrian
TI - On extremal sets without coprimes
JO - Acta Arithmetica
PY - 1994
VL - 66
IS - 1
SP - 89
EP - 99
LA - eng
KW - extremal sets; coprimes; Erdös conjecture
UR - http://eudml.org/doc/206594
ER -

References

top
  1. [1] R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of sets, their unions and intersections, Z. Wahrsch. Verw. Gebiete 43 (1978), 183-185. Zbl0357.04011
  2. [2] R. Ahlswede and D. E. Daykin, The number of values of combinatorial functions, Bull. London Math. Soc. 11 (1979), 49-51. Zbl0409.05006
  3. [3] R. Ahlswede and D. E. Daykin, Inequalities for a pair of maps S × S → S with S a finite set, Math. Z. 165 (1979), 267-289. Zbl0424.05005
  4. [4] B. Bollobás, Combinatorics, Cambridge University Press, 1986. 
  5. [5] P. Erdős, On the differences of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935), 124-128. Zbl61.0134.03
  6. [6] P. Erdős, Remarks in number theory, IV , Mat. Lapok 13 (1962), 228-255. 
  7. [7] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973. 
  8. [8] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. Zbl0448.10002
  9. [9] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, preprint No. 9/1992, Mathematical Institute of the Hungarian Academy of Sciences. 
  10. [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. Zbl0188.34504
  11. [11] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, II, Publ. Math. 27 (1980), 117-125. Zbl0461.10047
  12. [12] J. Marica and J. Schönheim, Differences of sets and a problem of Graham, Canad. Math. Bull. 12 (1969), 635-637. Zbl0192.33202
  13. [13] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247. Zbl0019.39403
  14. [14] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian). Zbl0609.10044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.