Sets of integers and quasi-integers with pairwise common divisor

Rudolf Ahlswede; Levon H. Khachatrian

Acta Arithmetica (1996)

  • Volume: 74, Issue: 2, page 141-153
  • ISSN: 0065-1036

How to cite

top

Rudolf Ahlswede, and Levon H. Khachatrian. "Sets of integers and quasi-integers with pairwise common divisor." Acta Arithmetica 74.2 (1996): 141-153. <http://eudml.org/doc/206842>.

@article{RudolfAhlswede1996,
author = {Rudolf Ahlswede, Levon H. Khachatrian},
journal = {Acta Arithmetica},
keywords = {coprime; distribution of primes; quasi-integers; quasi-primes},
language = {eng},
number = {2},
pages = {141-153},
title = {Sets of integers and quasi-integers with pairwise common divisor},
url = {http://eudml.org/doc/206842},
volume = {74},
year = {1996},
}

TY - JOUR
AU - Rudolf Ahlswede
AU - Levon H. Khachatrian
TI - Sets of integers and quasi-integers with pairwise common divisor
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 2
SP - 141
EP - 153
LA - eng
KW - coprime; distribution of primes; quasi-integers; quasi-primes
UR - http://eudml.org/doc/206842
ER -

References

top
  1. [1] R. Ahlswede and L. H. Khachatrian, On extremal sets without coprimes, Acta Arith. 66 (1994), 89-99. Zbl0826.11043
  2. [2] R. Ahlswede and L. H. Khachatrian, Maximal sets of numbers not containing k+1 pairwise coprime integers, Acta Arith. 72 (1995), 77-100. Zbl0828.11011
  3. [3] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950), 247-256. Zbl0037.03001
  4. [4] P. Erdős, Remarks in number theory, IV, Mat. Lapok 13 (1962), 228-255. 
  5. [5] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 181-189. 
  6. [6] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973. 
  7. [7] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. Zbl0448.10002
  8. [8] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, Hardy-Ramanujan J. 16 (1993), 1-20. 
  9. [9] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. Zbl0188.34504
  10. [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of intergers, II, Publ. Math. Debrecen 27 (1980), 117-125. Zbl0461.10047
  11. [11] R. Freud, Paul Erdős, 80-A personal account, Period. Math. Hungar. 26 (1993), 87-93. Zbl0787.01017
  12. [12] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966; Springer, 1983. 
  13. [13] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, 1988. 
  14. [14] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-89. Zbl0122.05001
  15. [15] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian). Zbl0609.10044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.