Sets of integers and quasi-integers with pairwise common divisor
Rudolf Ahlswede; Levon H. Khachatrian
Acta Arithmetica (1996)
- Volume: 74, Issue: 2, page 141-153
- ISSN: 0065-1036
Access Full Article
topHow to cite
topRudolf Ahlswede, and Levon H. Khachatrian. "Sets of integers and quasi-integers with pairwise common divisor." Acta Arithmetica 74.2 (1996): 141-153. <http://eudml.org/doc/206842>.
@article{RudolfAhlswede1996,
author = {Rudolf Ahlswede, Levon H. Khachatrian},
journal = {Acta Arithmetica},
keywords = {coprime; distribution of primes; quasi-integers; quasi-primes},
language = {eng},
number = {2},
pages = {141-153},
title = {Sets of integers and quasi-integers with pairwise common divisor},
url = {http://eudml.org/doc/206842},
volume = {74},
year = {1996},
}
TY - JOUR
AU - Rudolf Ahlswede
AU - Levon H. Khachatrian
TI - Sets of integers and quasi-integers with pairwise common divisor
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 2
SP - 141
EP - 153
LA - eng
KW - coprime; distribution of primes; quasi-integers; quasi-primes
UR - http://eudml.org/doc/206842
ER -
References
top- [1] R. Ahlswede and L. H. Khachatrian, On extremal sets without coprimes, Acta Arith. 66 (1994), 89-99. Zbl0826.11043
- [2] R. Ahlswede and L. H. Khachatrian, Maximal sets of numbers not containing k+1 pairwise coprime integers, Acta Arith. 72 (1995), 77-100. Zbl0828.11011
- [3] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950), 247-256. Zbl0037.03001
- [4] P. Erdős, Remarks in number theory, IV, Mat. Lapok 13 (1962), 228-255.
- [5] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 181-189.
- [6] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973.
- [7] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. Zbl0448.10002
- [8] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, Hardy-Ramanujan J. 16 (1993), 1-20.
- [9] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. Zbl0188.34504
- [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of intergers, II, Publ. Math. Debrecen 27 (1980), 117-125. Zbl0461.10047
- [11] R. Freud, Paul Erdős, 80-A personal account, Period. Math. Hungar. 26 (1993), 87-93. Zbl0787.01017
- [12] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966; Springer, 1983.
- [13] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, 1988.
- [14] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-89. Zbl0122.05001
- [15] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian). Zbl0609.10044
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.