Maximal sets of numbers not containing k+1 pairwise coprime integers

Rudolf Ahlswede; Levon H. Khachatrian

Acta Arithmetica (1995)

  • Volume: 72, Issue: 1, page 77-100
  • ISSN: 0065-1036

How to cite

top

Rudolf Ahlswede, and Levon H. Khachatrian. "Maximal sets of numbers not containing k+1 pairwise coprime integers." Acta Arithmetica 72.1 (1995): 77-100. <http://eudml.org/doc/206786>.

@article{RudolfAhlswede1995,
author = {Rudolf Ahlswede, Levon H. Khachatrian},
journal = {Acta Arithmetica},
keywords = {density; Erdös sets; extremal sets without coprimes; maximal cardinality},
language = {eng},
number = {1},
pages = {77-100},
title = {Maximal sets of numbers not containing k+1 pairwise coprime integers},
url = {http://eudml.org/doc/206786},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Rudolf Ahlswede
AU - Levon H. Khachatrian
TI - Maximal sets of numbers not containing k+1 pairwise coprime integers
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 1
SP - 77
EP - 100
LA - eng
KW - density; Erdös sets; extremal sets without coprimes; maximal cardinality
UR - http://eudml.org/doc/206786
ER -

References

top
  1. [1] R. Ahlswede and L. H. Khachatrian, On extremal sets without coprimes, Acta Arith. 66 (1994), 89-99. Zbl0826.11043
  2. [2] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950), 247-256. Zbl0037.03001
  3. [3] A. A. Buchstab, Asymptotische Abschätzungen einer allgemeinen zahlentheoretischen Funktion, Mat. Sb. (N.S.) 44 (1937), 1239-1246. Zbl63.0902.01
  4. [4] P. Erdős, On the density of some sequences of integers, Bull. Amer. Math. Soc. 54 (1948), 685-692. Zbl0032.01301
  5. [5] P. Erdős, Remarks in number theory IV, Mat. Lapok 13 (1962), 228-255. Zbl0127.02202
  6. [6] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 181-189. 
  7. [7] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973. 
  8. [8] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. Zbl0448.10002
  9. [9] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, Hardy-Ramanujan J. 16 (1993), 1-20. 
  10. [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. Zbl0188.34504
  11. [11] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, II, Publ. Math. Debrecen 27 (1980), 117-125. Zbl0461.10047
  12. [12] R. Freud, Paul Erdős, 80-A Personal Account, Period. Math. Hungar. 26 (2) (1993), 87-93. Zbl0787.01017
  13. [13] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966, Springer, 1983. 
  14. [14] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, 1988. 
  15. [15] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian) Zbl0609.10044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.