On CM-fields with the same maximal real subfield

Kuniaki Horie

Acta Arithmetica (1994)

  • Volume: 67, Issue: 3, page 219-227
  • ISSN: 0065-1036

How to cite

top

Kuniaki Horie. "On CM-fields with the same maximal real subfield." Acta Arithmetica 67.3 (1994): 219-227. <http://eudml.org/doc/206628>.

@article{KuniakiHorie1994,
author = {Kuniaki Horie},
journal = {Acta Arithmetica},
keywords = {CM-field; Iwasawa invariants; totally real number field; totally imaginary quadratic extensions; odd relative class number},
language = {eng},
number = {3},
pages = {219-227},
title = {On CM-fields with the same maximal real subfield},
url = {http://eudml.org/doc/206628},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Kuniaki Horie
TI - On CM-fields with the same maximal real subfield
JO - Acta Arithmetica
PY - 1994
VL - 67
IS - 3
SP - 219
EP - 227
LA - eng
KW - CM-field; Iwasawa invariants; totally real number field; totally imaginary quadratic extensions; odd relative class number
UR - http://eudml.org/doc/206628
ER -

References

top
  1. [1] B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138. Zbl0632.12007
  2. [2] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420. Zbl0212.08101
  3. [3] E. Friedman, Iwasawa invariants, Math. Ann. 271 (1985), 13-30. Zbl0533.12007
  4. [4] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Phisica-Verlag, Würzburg-Wien, 1970. 
  5. [5] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38. 
  6. [6] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. Zbl0074.03002
  7. [7] Y. Kida, Cyclotomic ℤ₂-extensions of J-fields, J. Number Theory 14 (1982), 340-352. 
  8. [8] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85. Zbl0074.03001
  9. [9] H. Naito, Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants, J. Math. Soc. Japan 43 (1991), 185-194. Zbl0719.11072
  10. [10] J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24. Zbl0663.14023
  11. [11] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. Zbl59.0192.01
  12. [12] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982. Zbl0484.12001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.