Inclusion of CM-fields and divisibility ofrelative class numbers

Ryotaro Okazaki

Acta Arithmetica (2000)

  • Volume: 92, Issue: 4, page 319-338
  • ISSN: 0065-1036

How to cite

top

Ryotaro Okazaki. "Inclusion of CM-fields and divisibility ofrelative class numbers." Acta Arithmetica 92.4 (2000): 319-338. <http://eudml.org/doc/207391>.

@article{RyotaroOkazaki2000,
author = {Ryotaro Okazaki},
journal = {Acta Arithmetica},
keywords = {CM-fields; class number; minus class group; class field theory},
language = {eng},
number = {4},
pages = {319-338},
title = {Inclusion of CM-fields and divisibility ofrelative class numbers},
url = {http://eudml.org/doc/207391},
volume = {92},
year = {2000},
}

TY - JOUR
AU - Ryotaro Okazaki
TI - Inclusion of CM-fields and divisibility ofrelative class numbers
JO - Acta Arithmetica
PY - 2000
VL - 92
IS - 4
SP - 319
EP - 338
LA - eng
KW - CM-fields; class number; minus class group; class field theory
UR - http://eudml.org/doc/207391
ER -

References

top
  1. [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. Zbl0760.11033
  2. [2] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102. 
  3. [3] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152. 
  4. [4] H. Furuya, On divisibility by 2 of the relative class numbers of imaginary number fields, Tôhoku Math. J. 23 (1971), 207-218. Zbl0225.12006
  5. [5] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663. Zbl0345.12007
  6. [6] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87. 
  7. [7] K. Győry, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen 22 (1975), 151-175. Zbl0336.12005
  8. [8] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. 
  9. [9] H. Heilbronn, On real zeros of Dedekind ζ-functions, Canad. J. Math. 25 (1973), 870-873. Zbl0272.12010
  10. [10] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math. 64 (1989), 235-251. Zbl0703.11054
  11. [11] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
  12. [12] K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505-521. Zbl0761.11039
  13. [13] K. Horie, On CM-fields with the same maximal real subfield, Acta Arith. 67 (1994), 219-227. Zbl0811.11065
  14. [14] D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451. Zbl0203.35301
  15. [15] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260. Zbl0807.11052
  16. [16] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, ibid. 72 (1995), 347-359. Zbl0837.11059
  17. [17] F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997), 205-214. Zbl0919.11075
  18. [18] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140. Zbl0207.05602
  19. [19] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1974), 529-542. Zbl0285.12004
  20. [20] P. Roquette, On class field towers, in: Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich (eds.), Academic Press, London, 1967, 231-249. 
  21. [21] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Univ. Press, Princeton, 1997. Zbl0908.11023
  22. [22] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties, The Mathematical Society of Japan, 1961. Zbl0112.03502
  23. [23] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27. 
  24. [24] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
  25. [25] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. Zbl0278.12005
  26. [26] T. Takagi, Über eine Theorie des relativ Abel'schen Zahlkörpers, in: T. Takagi, Collected Papers, Springer, Tokyo, 1990, 73-167. 
  27. [27] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982, 2nd ed., 1991. Zbl0484.12001
  28. [28] E. E. Whitaker, A determination of the imaginary quadratic number fields with Klein-four group as class group, thesis, 1972. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.