Inclusion of CM-fields and divisibility ofrelative class numbers
Acta Arithmetica (2000)
- Volume: 92, Issue: 4, page 319-338
- ISSN: 0065-1036
Access Full Article
topHow to cite
topRyotaro Okazaki. "Inclusion of CM-fields and divisibility ofrelative class numbers." Acta Arithmetica 92.4 (2000): 319-338. <http://eudml.org/doc/207391>.
@article{RyotaroOkazaki2000,
author = {Ryotaro Okazaki},
journal = {Acta Arithmetica},
keywords = {CM-fields; class number; minus class group; class field theory},
language = {eng},
number = {4},
pages = {319-338},
title = {Inclusion of CM-fields and divisibility ofrelative class numbers},
url = {http://eudml.org/doc/207391},
volume = {92},
year = {2000},
}
TY - JOUR
AU - Ryotaro Okazaki
TI - Inclusion of CM-fields and divisibility ofrelative class numbers
JO - Acta Arithmetica
PY - 2000
VL - 92
IS - 4
SP - 319
EP - 338
LA - eng
KW - CM-fields; class number; minus class group; class field theory
UR - http://eudml.org/doc/207391
ER -
References
top- [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. Zbl0760.11033
- [2] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.
- [3] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152.
- [4] H. Furuya, On divisibility by 2 of the relative class numbers of imaginary number fields, Tôhoku Math. J. 23 (1971), 207-218. Zbl0225.12006
- [5] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663. Zbl0345.12007
- [6] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
- [7] K. Győry, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen 22 (1975), 151-175. Zbl0336.12005
- [8] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253.
- [9] H. Heilbronn, On real zeros of Dedekind ζ-functions, Canad. J. Math. 25 (1973), 870-873. Zbl0272.12010
- [10] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math. 64 (1989), 235-251. Zbl0703.11054
- [11] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
- [12] K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505-521. Zbl0761.11039
- [13] K. Horie, On CM-fields with the same maximal real subfield, Acta Arith. 67 (1994), 219-227. Zbl0811.11065
- [14] D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451. Zbl0203.35301
- [15] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260. Zbl0807.11052
- [16] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, ibid. 72 (1995), 347-359. Zbl0837.11059
- [17] F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997), 205-214. Zbl0919.11075
- [18] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140. Zbl0207.05602
- [19] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1974), 529-542. Zbl0285.12004
- [20] P. Roquette, On class field towers, in: Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich (eds.), Academic Press, London, 1967, 231-249.
- [21] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Univ. Press, Princeton, 1997. Zbl0908.11023
- [22] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties, The Mathematical Society of Japan, 1961. Zbl0112.03502
- [23] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.
- [24] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
- [25] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. Zbl0278.12005
- [26] T. Takagi, Über eine Theorie des relativ Abel'schen Zahlkörpers, in: T. Takagi, Collected Papers, Springer, Tokyo, 1990, 73-167.
- [27] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982, 2nd ed., 1991. Zbl0484.12001
- [28] E. E. Whitaker, A determination of the imaginary quadratic number fields with Klein-four group as class group, thesis, 1972.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.