Upper bounds for class numbers of real quadratic fields

Maohua Le

Acta Arithmetica (1994)

  • Volume: 68, Issue: 2, page 141-144
  • ISSN: 0065-1036

How to cite

top

Maohua Le. "Upper bounds for class numbers of real quadratic fields." Acta Arithmetica 68.2 (1994): 141-144. <http://eudml.org/doc/206650>.

@article{MaohuaLe1994,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {upper bounds; quadratic field; class number},
language = {eng},
number = {2},
pages = {141-144},
title = {Upper bounds for class numbers of real quadratic fields},
url = {http://eudml.org/doc/206650},
volume = {68},
year = {1994},
}

TY - JOUR
AU - Maohua Le
TI - Upper bounds for class numbers of real quadratic fields
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 2
SP - 141
EP - 144
LA - eng
KW - upper bounds; quadratic field; class number
UR - http://eudml.org/doc/206650
ER -

References

top
  1. [1] T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281-288. Zbl0701.11045
  2. [2] O. Bernard, Groupes des classes d’idéaux des corps quadratiques réels ( d 1 / 2 ) , 1 < d ≤ 24572, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988. 
  3. [3] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962), 113-122. Zbl0116.02901
  4. [4] S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. Zbl0721.11049
  5. [5] S. Louboutin, Majoration explicites de |L(1,χ)|, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11-14. 
  6. [6] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77. 
  7. [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech). 
  8. [8] R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for √D, Pacific J. Math. 67 (1976), 525-536. Zbl0346.10005
  9. [9] H. C. Williams and J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893. Zbl0345.12004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.