Upper bounds for class numbers of real quadratic fields
Acta Arithmetica (1994)
- Volume: 68, Issue: 2, page 141-144
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMaohua Le. "Upper bounds for class numbers of real quadratic fields." Acta Arithmetica 68.2 (1994): 141-144. <http://eudml.org/doc/206650>.
@article{MaohuaLe1994,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {upper bounds; quadratic field; class number},
language = {eng},
number = {2},
pages = {141-144},
title = {Upper bounds for class numbers of real quadratic fields},
url = {http://eudml.org/doc/206650},
volume = {68},
year = {1994},
}
TY - JOUR
AU - Maohua Le
TI - Upper bounds for class numbers of real quadratic fields
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 2
SP - 141
EP - 144
LA - eng
KW - upper bounds; quadratic field; class number
UR - http://eudml.org/doc/206650
ER -
References
top- [1] T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281-288. Zbl0701.11045
- [2] O. Bernard, Groupes des classes d’idéaux des corps quadratiques réels , 1 < d ≤ 24572, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988.
- [3] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962), 113-122. Zbl0116.02901
- [4] S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. Zbl0721.11049
- [5] S. Louboutin, Majoration explicites de |L(1,χ)|, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11-14.
- [6] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.
- [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).
- [8] R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for √D, Pacific J. Math. 67 (1976), 525-536. Zbl0346.10005
- [9] H. C. Williams and J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893. Zbl0345.12004
Citations in EuDML Documents
top- Maohua Le, A correction to the paper "Upper bounds for class numbers of real quadratic fields" (Acta Arith. 68 (1994), 141-144)
- Yuan-e Zhao, Tingting Wang, A note on the number of solutions of the generalized Ramanujan-Nagell equation
- Yann Bugeaud, On the diophantine equation
- Stéphane Louboutin, On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.