On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes

Stéphane Louboutin[1]

  • [1] Institut de Mathématiques de Luminy, UMR 6206 163, avenue de Luminy, Case 907 13288 Marseille Cedex 9, FRANCE

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 2, page 559-573
  • ISSN: 1246-7405

Abstract

top
Lately, explicit upper bounds on | L ( 1 , χ ) | (for primitive Dirichlet characters χ ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other applications of such bounds together with new bounds for non-abelian number fields.

How to cite

top

Louboutin, Stéphane. "On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 559-573. <http://eudml.org/doc/249456>.

@article{Louboutin2005,
abstract = {Lately, explicit upper bounds on $\vert L(1,\chi )\vert $ (for primitive Dirichlet characters $\chi $) taking into account the behaviors of $\chi $ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other applications of such bounds together with new bounds for non-abelian number fields.},
affiliation = {Institut de Mathématiques de Luminy, UMR 6206 163, avenue de Luminy, Case 907 13288 Marseille Cedex 9, FRANCE},
author = {Louboutin, Stéphane},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {$L$-functions; Dedekind zeta functions; number fields; class number; Class numbers; cubic and quartic extensions; cyclotomic fields; zeta functions},
language = {eng},
number = {2},
pages = {559-573},
publisher = {Université Bordeaux 1},
title = {On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes},
url = {http://eudml.org/doc/249456},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Louboutin, Stéphane
TI - On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 559
EP - 573
AB - Lately, explicit upper bounds on $\vert L(1,\chi )\vert $ (for primitive Dirichlet characters $\chi $) taking into account the behaviors of $\chi $ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other applications of such bounds together with new bounds for non-abelian number fields.
LA - eng
KW - $L$-functions; Dedekind zeta functions; number fields; class number; Class numbers; cubic and quartic extensions; cyclotomic fields; zeta functions
UR - http://eudml.org/doc/249456
ER -

References

top
  1. S. Bessassi, Bounds for the degrees of CM-fields of class number one. Acta Arith. 106 (2003), 213–245. Zbl1146.11329MR1957106
  2. Y. Bugeaud, G. Hanrot, M. Mignotte, Sur l’équation diophantienne ( x n - 1 ) / ( x - 1 ) = y q . III. Proc. London Math. Soc. (3) 84 (2002), 59–78. Zbl1102.11305
  3. G. Boutteaux, S. Louboutin, The class number one problem for some non-normal sextic CM-fields. Part 2. Acta Math. Inform. Univ. Ostraviensis 10 (2002), 3–23. Zbl1042.11070MR1943019
  4. A. R. Booker, Quadratic class numbers and characters sums. Math. Comp., to appear. Zbl1095.11057MR2219039
  5. H. Cohen, H. W. Lenstra, Heuristics on class groups of number fields. Lecture Notes in Math. 1068 (1984), 33–62. Zbl0558.12002MR756082
  6. G. Cornell, L. C. Washington, Class numbers of cyclotomic fields. J. Number Theory 21 (1985), 260–274. Zbl0582.12005MR814005
  7. M. J. Jacobson, H. C. Williams, K. Wooding, Imaginary cyclic quartic fileds with large minus class numbers. Algorithmic Number Theory (University of Vermont, 2004), Lectures Notes in Computer Science 3076 (2004), 280–292. Zbl1125.11350MR2137361
  8. A. J. Lazarus, Class numbers of simplest quartic fields. Number theory (Banff, AB, 1988), 313–323, Walter de Gruyter, Berlin, 1990. Zbl0712.11061MR1106670
  9. A. J. Lazarus, On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1–13. Zbl0719.11073MR1096465
  10. M. Le, Upper bounds for class numbers of real quadratic fields. Acta Arith. 68 (1994), 141–144. Zbl0816.11055MR1305196
  11. G.-N. Lee, S.-H. Kwon, CM-fields with relative class number one. Math. Comp., to appear. Zbl1143.11353MR2197004
  12. S. Louboutin, Determination of all non-quadratic imaginary cyclic number fields of 2 -power degrees with ideal class groups of exponents 2 . Math. Comp. 64 (1995), 323–340. Zbl0822.11072MR1248972
  13. S. Louboutin, CM-fields with cyclic ideal class groups of 2 -power orders. J. Number Theory 67 (1997), 1–10. Zbl0881.11078MR1485424
  14. S. Louboutin, Computation of relative class numbers of imaginary abelian number fields. Experimental Math. 7 (1998), 293–303. Zbl0929.11065MR1678103
  15. S. Louboutin, Explicit upper bounds for residues of Dedekind zeta functions and values of L -functions at s = 1 , and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math. 53 (2001), 1194–1222. Zbl0998.11066MR1863848
  16. S. Louboutin, Efficient computation of class numbers of real abelian number fields. Lectures Notes in Computer Science 2369 (2002), 625–628. Zbl1067.11081MR2041079
  17. S. Louboutin, Computation of class numbers of quadratic number fields. Math. Comp. 71 (2002), 1735–1743. Zbl1030.11079MR1933052
  18. S. Louboutin, The exponent three class group problem for some real cyclic cubic number fields. Proc. Amer. Math. Soc. 130 (2002), 353–361. Zbl0999.11068MR1862112
  19. S. Louboutin, Explicit lower bounds for residues at s = 1 of Dedekind zeta functions and relative class numbers of CM-fields. Trans. Amer. Math. Soc. 355 (2003), 3079–3098. Zbl1026.11085MR1974676
  20. S. Louboutin, Explicit upper bounds for values at s = 1 of Dirichlet L -series associated with primitive even characters. J. Number Theory 104 (2004), 118–131. Zbl1044.11082MR2021629
  21. S. Louboutin, The simplest quartic fields with ideal class groups of exponents 2 . J. Math. Soc. Japan 56 (2004), 717–727. Zbl1142.11365MR2071669
  22. S. Louboutin, Class numbers of real cyclotomic fields. Publ. Math. Debrecen 64 (2004), 451–461. Zbl1072.11081MR2058916
  23. S. Louboutin, Explicit upper bounds for | L ( 1 , χ ) | for primitive characters χ . Quart. J. Math. 55 (2004), 57–68. Zbl1065.11063MR2043007
  24. C. Moser, Nombre de classes d’une extension cyclique réelle de Q de degré 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45–52. Zbl0506.12003
  25. C. Moser, J.-J. Payan, Majoration du nombre de classes d’un corps cubique de conducteur premier. J. Math. Soc. Japan 33 (1981), 701–706. Zbl0456.12004
  26. M. Mignotte, Y. Roy,Minorations pour l’équation de Catalan. C. R. Acad. Sci. Paris 324 (1997), 377–380. Zbl0887.11018
  27. A. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275–286. Zbl0306.12005MR376613
  28. O. Ramaré, Approximate formulae for L ( 1 , χ ) . Acta Arith. 100 (2001), 245–266. Zbl0985.11037MR1865385
  29. O. Ramaré, Approximate formulae for | L ( 1 , χ ) | . II. Acta Arith. 112 (2004), 141–149. Zbl1053.11073MR2051374
  30. R. G. Stanton, C. Sudler, H. C. Williams, An upper bound for the period of the simple continued fraction for D . Pacific J. Math. 67 (1976), 525–536. Zbl0346.10005MR429724
  31. H. M. Stark, Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23 (1974), 135–152. Zbl0278.12005MR342472
  32. R. Steiner, Class number bounds and Catalan’s equation. Math. Comp. 67 (1998), 1317–1322. Zbl0897.11009
  33. E. Seah, L. C. Washington, H. C. Williams, The calculation of a large cubic class number with an application to real cyclotomic fields. Math. Comp. 41 (1983), 303–305. Zbl0527.12004MR701641
  34. L. C. Washington, Class numbers of the simplest cubic fields. Math. Comp. 48 (1987), 371–384. Zbl0613.12002MR866122
  35. H. C. Williams, J. Broere, A computational technique for evaluating L ( 1 , χ ) and the class number of a real quadratic field. Math. Comp. 30 (1976), 887–893. Zbl0345.12004MR414522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.