On the diophantine equation x 2 - p m = ± y n

Yann Bugeaud

Acta Arithmetica (1997)

  • Volume: 80, Issue: 3, page 213-223
  • ISSN: 0065-1036

How to cite

top

Yann Bugeaud. "On the diophantine equation $x^2 - p^m = ±y^n$." Acta Arithmetica 80.3 (1997): 213-223. <http://eudml.org/doc/207038>.

@article{YannBugeaud1997,
author = {Yann Bugeaud},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equation; Baker's method; linear forms in two logarithms},
language = {eng},
number = {3},
pages = {213-223},
title = {On the diophantine equation $x^2 - p^m = ±y^n$},
url = {http://eudml.org/doc/207038},
volume = {80},
year = {1997},
}

TY - JOUR
AU - Yann Bugeaud
TI - On the diophantine equation $x^2 - p^m = ±y^n$
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 3
SP - 213
EP - 223
LA - eng
KW - exponential diophantine equation; Baker's method; linear forms in two logarithms
UR - http://eudml.org/doc/207038
ER -

References

top
  1. [1] Y. Bugeaud, On the diophantine equation x 2 - 2 m = ± y n , Proc. Amer. Math. Soc., to appear. Zbl0893.11012
  2. [2] Y. Bugeaud et M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342 
  3. [3] A. Faisant, L'équation diophantienne du second degré, Hermann, Paris, 1991. 
  4. [4] Y. D. Guo and M. H. Le, A note on the exponential diophantine equation x 2 - 2 m = y n , Proc. Amer. Math. Soc. 123 (1995), 3627-3629. 
  5. [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1990. Zbl0020.29201
  6. [6] C. Ko, On the diophantine equation x 2 = y n + 1 , xy ≠ 0, Sci. Sinica 14 (1965), 457-460. Zbl0163.04004
  7. [7] S. V. Kotov, Über die maximale Norm der Idealteiler des Polynoms a x m + b y n mit den algebraischen Koeffizienten, Acta Arith. 31 (1976), 219-230. Zbl0352.12002
  8. [8] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. Zbl0843.11036
  9. [9] M. H. Le, On the generalized Ramanujan-Nagell equation, III, Dongbei Shuxue 4 (1988), 180-184. Zbl0669.10033
  10. [10] M. H. Le, The diophantine equation x 2 + D m = p n , Acta Arith. 52 (1989), 255-265. 
  11. [11] M. H. Le, Applications of Baker's method, IV, J. Changsha Railway Inst. 9 (1991), no. 2, 87-92. Zbl0891.11019
  12. [12] M. H. Le, A note on the diophantine equation ( x m - 1 ) / ( x - 1 ) = y n , Acta Arith. 64 (1993), 19-28. 
  13. [13] M. H. Le, Upper bounds for class number of real quadratic fields, ibid. 68 (1994), 141-144. Zbl0816.11055
  14. [14] M. H. Le, Some exponential diophantine equations, I, J. Number Theory 55 (1995), 209-221. Zbl0852.11015
  15. [15] T. N. Shorey, A. J. Van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 59-78. Zbl0371.10015
  16. [16] M. Toyoizumi, On the diophantine equation x 2 + D m = p n , Acta Arith. 42 (1983), 303-309. Zbl0554.10008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.