On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions
Acta Arithmetica (1994)
- Volume: 68, Issue: 2, page 145-151
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441. Zbl0091.04204
- [2] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. (2) 31 (1930), 419-448. Zbl56.0874.04
- [3] A. Rotkiewicz, On the pseudoprimes of the form ax+b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 349-354. Zbl0249.10012
- [4] A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp. 39 (1982), 239-247. Zbl0492.10002
- [5] A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413-416. Zbl0106.03105
- [6] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 79-92.
- [7] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. Zbl0065.27102