The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields
Acta Arithmetica (1995)
- Volume: 69, Issue: 2, page 153-169
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264. Zbl0729.11061
- [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113.
- [3] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
- [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂(O) containing no elements of order four, preprint. Zbl0844.11072
- [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂(O), Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
- [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. Zbl0482.10001
- [7] M. Kolster, The structure of the 2-Sylow subgroup of K₂(O), I , Comment. Math. Helv. 61 (1986), 576-588.
- [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971. Zbl0237.18005
- [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. Zbl0587.12001
- [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
- [11] H. Qin, K₂ and algebraic number theory, Ph.D. Thesis, Nanjing University, 1992.
- [12] H. Qin, The 2-Sylow subgroups of for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254-1263.
- [13] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011