On two-primary algebraic K-theory of quadratic number rings with focus on K₂

Marius Crainic; Paul Arne Østvær

Acta Arithmetica (1999)

  • Volume: 87, Issue: 3, page 223-243
  • ISSN: 0065-1036

How to cite

top

Marius Crainic, and Paul Arne Østvær. "On two-primary algebraic K-theory of quadratic number rings with focus on K₂." Acta Arithmetica 87.3 (1999): 223-243. <http://eudml.org/doc/207218>.

@article{MariusCrainic1999,
author = {Marius Crainic, Paul Arne Østvær},
journal = {Acta Arithmetica},
keywords = {algebraic K-groups of quadratic number rings; 2- and 4-rank formulas for Picard groups; étale cohomology; quadratic number fields; algebraic -theory; 4-rank; tame kernel; ring of integers; strict class group},
language = {eng},
number = {3},
pages = {223-243},
title = {On two-primary algebraic K-theory of quadratic number rings with focus on K₂},
url = {http://eudml.org/doc/207218},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Marius Crainic
AU - Paul Arne Østvær
TI - On two-primary algebraic K-theory of quadratic number rings with focus on K₂
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 3
SP - 223
EP - 243
LA - eng
KW - algebraic K-groups of quadratic number rings; 2- and 4-rank formulas for Picard groups; étale cohomology; quadratic number fields; algebraic -theory; 4-rank; tame kernel; ring of integers; strict class group
UR - http://eudml.org/doc/207218
ER -

References

top
  1. [1] M. C. Boldy, The 2-primary component of the tame kernel of quadratic number fields, Ph.D. thesis, Catholic University of Nijmegen, 1991. 
  2. [2] A. Borel, Cohomologie réelle stable des groupes S-arithmétiques classiques, C. R. Acad. Sci. Paris 7 (1974), 235-272. 
  3. [3] J. Browkin and H. Gangl, Table of tame and wild kernels of quadratic imaginary number fields of discriminants > - 5000 (conjectural values), Math. Comp., to appear. Zbl0919.11079
  4. [4] J. Browkin and A. Schinzel, On Sylow 2-subgroups of for quadratic number fields F, J. Reine Angew. Math. 331 (1982), 104-113. Zbl0493.12013
  5. [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂(𝓞), Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
  6. [6] A. Fröhlich and R. Taylor, Algebraic Number Theory, Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, 1993. 
  7. [7] M. Ishida, The Genus Fields of Algebraic Number Fields, Lecture Notes in Math. 555, Springer, 1976. Zbl0353.12001
  8. [8] F. Keune, On the structure of the K₂ of ring of integers in a number field, K-Theory 2 (1989), 625-645. Zbl0705.19007
  9. [9] M. Kolster, The structure of the 2-Sylow subgroup of K₂(𝓞), I, Comment. Math. Helv. 61 (1986), 376-388. Zbl0601.12017
  10. [10] P. Morton, On Redei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1978), 373-398. Zbl0395.12018
  11. [11] J. Neukirch, Class Field Theory, Grundlehren Math. Wiss. 280, Springer, 1986. Zbl0587.12001
  12. [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. Zbl0826.11055
  13. [13] H. Qin, The 4-rank of for real quadratic fields F, Acta Arith. 72 (1995), 323-333. 
  14. [14] D. Quillen, Finite Generation of the Groups of Rings of Algebraic Integers, Lectures Notes in Math. 341, Springer, 1973, 179-198. Zbl0355.18018
  15. [15] J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields, preprint, 1997; http://www.math.uiuc.edu/K-theory/0220/. 
  16. [16] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
  17. [17] A. Vazzana, On the 2-primary part of K₂ of rings of integers in certain quadratic number fields, Acta Arith. 80 (1997), 225-235. Zbl0868.11054
  18. [18] A. Vazzana, Elementary abelian 2-primary parts of K₂𝓞 and related graphs in certain quadratic number fields, Acta Arith. 81 (1997), 253-264. Zbl0905.11051

NotesEmbed ?

top

You must be logged in to post comments.