On two-primary algebraic K-theory of quadratic number rings with focus on K₂

Marius Crainic; Paul Arne Østvær

Acta Arithmetica (1999)

  • Volume: 87, Issue: 3, page 223-243
  • ISSN: 0065-1036

How to cite

top

Marius Crainic, and Paul Arne Østvær. "On two-primary algebraic K-theory of quadratic number rings with focus on K₂." Acta Arithmetica 87.3 (1999): 223-243. <http://eudml.org/doc/207218>.

@article{MariusCrainic1999,
author = {Marius Crainic, Paul Arne Østvær},
journal = {Acta Arithmetica},
keywords = {algebraic K-groups of quadratic number rings; 2- and 4-rank formulas for Picard groups; étale cohomology; quadratic number fields; algebraic -theory; 4-rank; tame kernel; ring of integers; strict class group},
language = {eng},
number = {3},
pages = {223-243},
title = {On two-primary algebraic K-theory of quadratic number rings with focus on K₂},
url = {http://eudml.org/doc/207218},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Marius Crainic
AU - Paul Arne Østvær
TI - On two-primary algebraic K-theory of quadratic number rings with focus on K₂
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 3
SP - 223
EP - 243
LA - eng
KW - algebraic K-groups of quadratic number rings; 2- and 4-rank formulas for Picard groups; étale cohomology; quadratic number fields; algebraic -theory; 4-rank; tame kernel; ring of integers; strict class group
UR - http://eudml.org/doc/207218
ER -

References

top
  1. [1] M. C. Boldy, The 2-primary component of the tame kernel of quadratic number fields, Ph.D. thesis, Catholic University of Nijmegen, 1991. 
  2. [2] A. Borel, Cohomologie réelle stable des groupes S-arithmétiques classiques, C. R. Acad. Sci. Paris 7 (1974), 235-272. 
  3. [3] J. Browkin and H. Gangl, Table of tame and wild kernels of quadratic imaginary number fields of discriminants > - 5000 (conjectural values), Math. Comp., to appear. Zbl0919.11079
  4. [4] J. Browkin and A. Schinzel, On Sylow 2-subgroups of K F for quadratic number fields F, J. Reine Angew. Math. 331 (1982), 104-113. Zbl0493.12013
  5. [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂(𝓞), Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
  6. [6] A. Fröhlich and R. Taylor, Algebraic Number Theory, Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, 1993. 
  7. [7] M. Ishida, The Genus Fields of Algebraic Number Fields, Lecture Notes in Math. 555, Springer, 1976. Zbl0353.12001
  8. [8] F. Keune, On the structure of the K₂ of ring of integers in a number field, K-Theory 2 (1989), 625-645. Zbl0705.19007
  9. [9] M. Kolster, The structure of the 2-Sylow subgroup of K₂(𝓞), I, Comment. Math. Helv. 61 (1986), 376-388. Zbl0601.12017
  10. [10] P. Morton, On Redei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1978), 373-398. Zbl0395.12018
  11. [11] J. Neukirch, Class Field Theory, Grundlehren Math. Wiss. 280, Springer, 1986. Zbl0587.12001
  12. [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. Zbl0826.11055
  13. [13] H. Qin, The 4-rank of K O F for real quadratic fields F, Acta Arith. 72 (1995), 323-333. 
  14. [14] D. Quillen, Finite Generation of the Groups K i of Rings of Algebraic Integers, Lectures Notes in Math. 341, Springer, 1973, 179-198. Zbl0355.18018
  15. [15] J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields, preprint, 1997; http://www.math.uiuc.edu/K-theory/0220/. 
  16. [16] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
  17. [17] A. Vazzana, On the 2-primary part of K₂ of rings of integers in certain quadratic number fields, Acta Arith. 80 (1997), 225-235. Zbl0868.11054
  18. [18] A. Vazzana, Elementary abelian 2-primary parts of K₂𝓞 and related graphs in certain quadratic number fields, Acta Arith. 81 (1997), 253-264. Zbl0905.11051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.