The 4-rank of K O F for real quadratic fields F

Hourong Qin

Acta Arithmetica (1995)

  • Volume: 72, Issue: 4, page 323-333
  • ISSN: 0065-1036

How to cite

top

Hourong Qin. "The 4-rank of $K₂O_F$ for real quadratic fields F." Acta Arithmetica 72.4 (1995): 323-333. <http://eudml.org/doc/206799>.

@article{HourongQin1995,
abstract = {},
author = {Hourong Qin},
journal = {Acta Arithmetica},
keywords = {4-rank of the tame kernel; real quadratic fields; tables; discriminants},
language = {eng},
number = {4},
pages = {323-333},
title = {The 4-rank of $K₂O_F$ for real quadratic fields F},
url = {http://eudml.org/doc/206799},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Hourong Qin
TI - The 4-rank of $K₂O_F$ for real quadratic fields F
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 4
SP - 323
EP - 333
AB -
LA - eng
KW - 4-rank of the tame kernel; real quadratic fields; tables; discriminants
UR - http://eudml.org/doc/206799
ER -

References

top
  1. [1] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264. Zbl0729.11061
  2. [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of K O F for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113. 
  3. [3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K₂ of number fields, Acta Arith. 52 (1989), 49-65. Zbl0705.19005
  4. [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂𝓞 containing no element of order four, preprint. 
  5. [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂𝓞, Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
  6. [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. Zbl0482.10001
  7. [7] M. Kolster, The structure of the 2-Sylow subgroup of K₂(O). I, Comment. Math. Helv. 61 (1986), 576-588. 
  8. [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971. Zbl0237.18005
  9. [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. Zbl0587.12001
  10. [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963. 
  11. [11] H. Qin, The 2-Sylow subgroups of K O F for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254-1263 (in Chinese). 
  12. [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. Zbl0826.11055
  13. [13] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
  14. [14] J. Urbanowicz, On the 2-primary part of a conjecture of Birch and Tate, Acta Arith. 43 (1983), 69-81. Zbl0529.12008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.