The 4-rank of for real quadratic fields F
Acta Arithmetica (1995)
- Volume: 72, Issue: 4, page 323-333
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264. Zbl0729.11061
- [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113.
- [3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K₂ of number fields, Acta Arith. 52 (1989), 49-65. Zbl0705.19005
- [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂𝓞 containing no element of order four, preprint.
- [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂𝓞, Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
- [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. Zbl0482.10001
- [7] M. Kolster, The structure of the 2-Sylow subgroup of K₂(O). I, Comment. Math. Helv. 61 (1986), 576-588.
- [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971. Zbl0237.18005
- [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. Zbl0587.12001
- [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
- [11] H. Qin, The 2-Sylow subgroups of for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254-1263 (in Chinese).
- [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. Zbl0826.11055
- [13] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
- [14] J. Urbanowicz, On the 2-primary part of a conjecture of Birch and Tate, Acta Arith. 43 (1983), 69-81. Zbl0529.12008