The 4-rank of K O F for real quadratic fields F

Hourong Qin

Acta Arithmetica (1995)

  • Volume: 72, Issue: 4, page 323-333
  • ISSN: 0065-1036

How to cite

top

Hourong Qin. "The 4-rank of $K₂O_F$ for real quadratic fields F." Acta Arithmetica 72.4 (1995): 323-333. <http://eudml.org/doc/206799>.

@article{HourongQin1995,
abstract = {},
author = {Hourong Qin},
journal = {Acta Arithmetica},
keywords = {4-rank of the tame kernel; real quadratic fields; tables; discriminants},
language = {eng},
number = {4},
pages = {323-333},
title = {The 4-rank of $K₂O_F$ for real quadratic fields F},
url = {http://eudml.org/doc/206799},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Hourong Qin
TI - The 4-rank of $K₂O_F$ for real quadratic fields F
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 4
SP - 323
EP - 333
AB -
LA - eng
KW - 4-rank of the tame kernel; real quadratic fields; tables; discriminants
UR - http://eudml.org/doc/206799
ER -

References

top
  1. [1] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264. Zbl0729.11061
  2. [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of K O F for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113. 
  3. [3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K₂ of number fields, Acta Arith. 52 (1989), 49-65. Zbl0705.19005
  4. [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂𝓞 containing no element of order four, preprint. 
  5. [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂𝓞, Canad. J. Math. 41 (1989), 932-960. Zbl0705.19006
  6. [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. Zbl0482.10001
  7. [7] M. Kolster, The structure of the 2-Sylow subgroup of K₂(O). I, Comment. Math. Helv. 61 (1986), 576-588. 
  8. [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971. Zbl0237.18005
  9. [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. Zbl0587.12001
  10. [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963. 
  11. [11] H. Qin, The 2-Sylow subgroups of K O F for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254-1263 (in Chinese). 
  12. [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. Zbl0826.11055
  13. [13] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
  14. [14] J. Urbanowicz, On the 2-primary part of a conjecture of Birch and Tate, Acta Arith. 43 (1983), 69-81. Zbl0529.12008

NotesEmbed ?

top

You must be logged in to post comments.