The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
Acta Arithmetica (1995)
- Volume: 69, Issue: 3, page 277-292
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Candiotti, Computations of Iwasawa invariants and K₂, Compositio Math. 29 (1974), 89-111. Zbl0364.12003
- [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μₚ vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395. Zbl0443.12001
- [3] T. Fukuda, Iwasawa λ-invariants of certain real quadratic fields, Proc. Japan Acad. 65A (1989), 260-262. Zbl0703.11055
- [4] T. Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ. 27 (1994), 35-88. (Corrigendum; to appear J. College Industrial Technology Nihon Univ.)
- [5] T. Fukuda and K. Komatsu, On the λ invariants of ℤₚ-extensions of real quadratic fields, J. Number Theory 23 (1986), 238-242. Zbl0593.12003
- [6] T. Fukuda and K. Komatsu, On ℤₚ-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95-102. Zbl0588.12004
- [7] T. Fukuda, K. Komatsu and H. Wada, A remark on the λ-invariants of real quadratic fields, Proc. Japan Acad. 62A (1986), 318-319. Zbl0612.12004
- [8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. Zbl0334.12013
- [9] R. Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J. 67 (1977), 139-158. Zbl0373.12007
- [10] K. Iwasawa, On -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326. Zbl0285.12008
- [11] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math. 797, Springer, Berlin, 1980. Zbl0423.12006
- [12] H. Taya, On the Iwasawa λ-invariants of real quadratic fields, Tokyo J. Math. 16 (1993), 121-130. Zbl0797.11084
- [13] H. Taya, Computation of ℤ₃-invariants of real quadratic fields, preprint series, Waseda Univ. Technical Report No. 93-13, 1993.
- [14] H. Wada and M. Saito, A table of ideal class groups of imaginary quadratic fields, Sophia Kôkyuroku in Math. 28, Depart. of Math., Sophia Univ. Tokyo, 1988. Zbl0629.12003
- [15] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, New York, 1982.
- [16] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31-44. Zbl0166.05803