Predictive criteria for the representation of primes by binary quadratic forms
Joseph B. Muskat; Blair K. Spearman; Kenneth S. Williams
Acta Arithmetica (1995)
- Volume: 70, Issue: 3, page 215-278
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJoseph B. Muskat, Blair K. Spearman, and Kenneth S. Williams. "Predictive criteria for the representation of primes by binary quadratic forms." Acta Arithmetica 70.3 (1995): 215-278. <http://eudml.org/doc/206750>.
@article{JosephB1995,
author = {Joseph B. Muskat, Blair K. Spearman, Kenneth S. Williams},
journal = {Acta Arithmetica},
keywords = {predictive criteria; binary quadratic forms},
language = {eng},
number = {3},
pages = {215-278},
title = {Predictive criteria for the representation of primes by binary quadratic forms},
url = {http://eudml.org/doc/206750},
volume = {70},
year = {1995},
}
TY - JOUR
AU - Joseph B. Muskat
AU - Blair K. Spearman
AU - Kenneth S. Williams
TI - Predictive criteria for the representation of primes by binary quadratic forms
JO - Acta Arithmetica
PY - 1995
VL - 70
IS - 3
SP - 215
EP - 278
LA - eng
KW - predictive criteria; binary quadratic forms
UR - http://eudml.org/doc/206750
ER -
References
top- [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. Zbl0760.11033
- [2] P. Barrucand and H. Cohn, Note on primes of type x² + 32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. Zbl0207.36202
- [3] J. A. Brandler, Residuacity properties of real quadratic units, J. Number Theory 5 (1973), 271-286. Zbl0272.12002
- [4] E. Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413-419. Zbl0273.12005
- [5] E. Brown, Class numbers of quadratic fields, Istituto Nazionale di alta Matematica, Symposia Mathematica (Bologna) 15 (1975), 403-411.
- [6] H. Cohn, A Second Course in Number Theory, Wiley, New York, 1962.
- [7] P. E. Conner and J. Hurrelbrink, Class Number Parity, World Sci., Singapore, 1988.
- [8] D. A. Cox, Primes of the Form x² + ny²; Fermat, Class Field Theory and Complex Multiplication, Wiley, New York, 1989.
- [9] P. G. L. Dirichlet, Recherches sur les diviseurs premiers d'une classe de formules du quatrième degré, J. Reine Angew. Math. 3 (1828), 35-69.
- [10] D. R. Estes and G. Pall, A reconsideration of Legendre-Jacobi symbols, J. Number Theory 5 (1973), 433-434. Zbl0268.10004
- [11] C. F. Gauss, Disquisitiones Arithmeticae, English translation by Arthur A. Clarke, Yale University Press, 1966.
- [12] R. H. Hudson and K. S. Williams, Congruences for representations of primes by binary quadratic forms, Acta Arith. 41 (1982), 311-322. Zbl0493.10007
- [13] P. Kaplan, K. S. Williams, and Y. Yamamoto, An application of dihedral fields to representations of primes by binary quadratic forms, Acta Arith. 44 (1984), 407-413. Zbl0553.10018
- [14] P. A. Leonard and K. S. Williams, A representation problem involving binary quadratic forms, Arch. Math. (Basel) 36 (1981), 53-56. Zbl0437.10009
- [15] J. B. Muskat, On simultaneous representations of primes by binary quadratic forms, J. Number Theory 19 (1984), 263-282. Zbl0547.10003
- [16] J. B. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216. Zbl0216.30801
- [17] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74 Zbl59.0192.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.