On Ramanujan's cubic continued fraction

Heng Huat Chan

Acta Arithmetica (1995)

  • Volume: 73, Issue: 4, page 343-355
  • ISSN: 0065-1036

How to cite

top

Heng Huat Chan. "On Ramanujan's cubic continued fraction." Acta Arithmetica 73.4 (1995): 343-355. <http://eudml.org/doc/206824>.

@article{HengHuatChan1995,
author = {Heng Huat Chan},
journal = {Acta Arithmetica},
keywords = {algorithm for computing , modular equations; numerical values; reciprocity theorems; Borwein's cubic theta function identity; identities; Ramanujan's cubic continued fraction},
language = {eng},
number = {4},
pages = {343-355},
title = {On Ramanujan's cubic continued fraction},
url = {http://eudml.org/doc/206824},
volume = {73},
year = {1995},
}

TY - JOUR
AU - Heng Huat Chan
TI - On Ramanujan's cubic continued fraction
JO - Acta Arithmetica
PY - 1995
VL - 73
IS - 4
SP - 343
EP - 355
LA - eng
KW - algorithm for computing , modular equations; numerical values; reciprocity theorems; Borwein's cubic theta function identity; identities; Ramanujan's cubic continued fraction
UR - http://eudml.org/doc/206824
ER -

References

top
  1. [1] G. E. Andrews, B. C. Berndt, L. Jacobsen and R. C. Lamphere, The continued fractions found in the unorganised portions of Ramanujan's notebooks, Mem. Amer. Math. Soc. 477 (1992). Zbl0758.40001
  2. [2] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, New York, 1991. 
  3. [3] B. C. Berndt, Ramanujan Notebooks, Part IV, Springer, New York, 1994. 
  4. [4] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. 
  5. [5] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691-701. Zbl0725.33014
  6. [6] J. M. Borwein, P. B. Borwein and F. G. Garvan, Some cubic identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47. Zbl0799.33012
  7. [7] K. G. Ramanathan, On Ramanujan's continued fraction, Acta Arith. 43 (1984), 209-226. Zbl0535.10007
  8. [8] K. G. Ramanathan, On some theorems stated by Ramanujan, in: Number Theory and Related Topics, Tata Inst. Fund. Res. Stud. Math. 12, Oxford University Press, Bombay, 1989, 151-160. Zbl0746.11009
  9. [9] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. Zbl0639.01023
  10. [10] L. J. Rogers, On a type of modular relation, Proc. London Math. Soc. 19 (1921), 387-397. Zbl48.0151.02
  11. [11] G. N. Watson, Theorems stated by Ramanujan (VII): theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48. Zbl55.0273.01
  12. [12] G. N. Watson, Theorems stated by Ramanujan (IX): two continued fractions, J. London Math. Soc., 231-237. Zbl55.0274.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.