On Ramanujan's cubic continued fraction
Acta Arithmetica (1995)
- Volume: 73, Issue: 4, page 343-355
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] G. E. Andrews, B. C. Berndt, L. Jacobsen and R. C. Lamphere, The continued fractions found in the unorganised portions of Ramanujan's notebooks, Mem. Amer. Math. Soc. 477 (1992). Zbl0758.40001
- [2] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, New York, 1991.
- [3] B. C. Berndt, Ramanujan Notebooks, Part IV, Springer, New York, 1994.
- [4] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
- [5] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691-701. Zbl0725.33014
- [6] J. M. Borwein, P. B. Borwein and F. G. Garvan, Some cubic identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47. Zbl0799.33012
- [7] K. G. Ramanathan, On Ramanujan's continued fraction, Acta Arith. 43 (1984), 209-226. Zbl0535.10007
- [8] K. G. Ramanathan, On some theorems stated by Ramanujan, in: Number Theory and Related Topics, Tata Inst. Fund. Res. Stud. Math. 12, Oxford University Press, Bombay, 1989, 151-160. Zbl0746.11009
- [9] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. Zbl0639.01023
- [10] L. J. Rogers, On a type of modular relation, Proc. London Math. Soc. 19 (1921), 387-397. Zbl48.0151.02
- [11] G. N. Watson, Theorems stated by Ramanujan (VII): theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48. Zbl55.0273.01
- [12] G. N. Watson, Theorems stated by Ramanujan (IX): two continued fractions, J. London Math. Soc., 231-237. Zbl55.0274.01