Unbounded stability of two-term recurrence sequences modulo
Acta Arithmetica (1996)
- Volume: 74, Issue: 4, page 329-346
- ISSN: 0065-1036
Access Full Article
topHow to cite
topWalter Carlip, and Eliot Jacobson. "Unbounded stability of two-term recurrence sequences modulo $2^k$." Acta Arithmetica 74.4 (1996): 329-346. <http://eudml.org/doc/206856>.
@article{WalterCarlip1996,
author = {Walter Carlip, Eliot Jacobson},
journal = {Acta Arithmetica},
keywords = {Lucas; Fibonacci; distribution; stability; Lucas sequence; Fibonacci sequence; distribution of two-term recurrence sequences; stable sequences},
language = {eng},
number = {4},
pages = {329-346},
title = {Unbounded stability of two-term recurrence sequences modulo $2^k$},
url = {http://eudml.org/doc/206856},
volume = {74},
year = {1996},
}
TY - JOUR
AU - Walter Carlip
AU - Eliot Jacobson
TI - Unbounded stability of two-term recurrence sequences modulo $2^k$
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 4
SP - 329
EP - 346
LA - eng
KW - Lucas; Fibonacci; distribution; stability; Lucas sequence; Fibonacci sequence; distribution of two-term recurrence sequences; stable sequences
UR - http://eudml.org/doc/206856
ER -
References
top- [1] W. Carlip and E. Jacobson, Stability of two-term recurrence sequences modulo , Fibonacci Quart., to appear. Zbl0838.11009
- [2] R. D. Carmichael, On the numerical factors of the arithmetic forms αⁿ ± βⁿ, Ann. of Math. (2) 15 (1913), 30-70.
- [3] E. T. Jacobson, Distribution of the Fibonacci numbers mod , Fibonacci Quart. 30 (1992), 211-215. Zbl0760.11007
- [4] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, New York, 1984. Zbl0541.10001
- [5] J. Pihko, A note on a theorem of Schinzel, Fibonacci Quart. 29 (1991), 333-338.
- [6] A. Schinzel, Special Lucas sequences, including the Fibonacci sequence, modulo a prime, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás, and A. Hajnal (eds.), Cambridge University Press, 1990, 349-357.
- [7] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p, in: Applications of Fibonacci Numbers, A. N. Philippou, A. F. Horadam, and G. E. Bergum (eds.), Kluwer, 1988, 311-324.
- [8] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p-II, Fibonacci Quart. 29 (1991), 72-78. Zbl0728.11010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.