Metric properties of some special p-adic series expansions

Arnold Knopfmacher; John Knopfmacher

Acta Arithmetica (1996)

  • Volume: 76, Issue: 1, page 11-19
  • ISSN: 0065-1036

How to cite

top

Arnold Knopfmacher, and John Knopfmacher. "Metric properties of some special p-adic series expansions." Acta Arithmetica 76.1 (1996): 11-19. <http://eudml.org/doc/206885>.

@article{ArnoldKnopfmacher1996,
author = {Arnold Knopfmacher, John Knopfmacher},
journal = {Acta Arithmetica},
keywords = {metric properties; -adic series expansions; Lüroth expansions; asymptotic results},
language = {eng},
number = {1},
pages = {11-19},
title = {Metric properties of some special p-adic series expansions},
url = {http://eudml.org/doc/206885},
volume = {76},
year = {1996},
}

TY - JOUR
AU - Arnold Knopfmacher
AU - John Knopfmacher
TI - Metric properties of some special p-adic series expansions
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 1
SP - 11
EP - 19
LA - eng
KW - metric properties; -adic series expansions; Lüroth expansions; asymptotic results
UR - http://eudml.org/doc/206885
ER -

References

top
  1. [1] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith. 74 (1996), 311-327. Zbl0848.11039
  2. [2] P. Billingsley, Ergodic Theory and Information, Wiley, 1965. Zbl0141.16702
  3. [3] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed., Wiley, 1968. Zbl0155.23101
  4. [4] J. Galambos, Representations of Real Numbers by Infinite Series, Springer, 1976. 
  5. [5] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser. A 72 (1969), 31-42. Zbl0167.32201
  6. [6] A. Y. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382. 
  7. [7] A. Knopfmacher and J. Knopfmacher, Series expansions in p-adic and other non-archimedean fields, J. Number Theory 32 (1989), 297-306. Zbl0683.10030
  8. [8] A. Knopfmacher and J. Knopfmacher, Infinite series expansions for p-adic numbers, J. Number Theory 41 (1992), 131-145. Zbl0756.11021
  9. [9] A. Knopfmacher and J. Knopfmacher, Metric properties of algorithms inducing Lüroth series expansions of Laurent series, Astérisque 209 (1992), 237-246. Zbl0788.11031
  10. [10] J. Knopfmacher, Ergodic properties of some inverse polynomial series expansions of Laurent series, Acta Math. Hungar. 60 (1992), 241-246. Zbl0774.11073
  11. [11] K. Knopp, Theory and Application of Infinite Series, Dover, 1990. 
  12. [12] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer, 1984. Zbl0364.12015
  13. [13] Y. Laohakosol, A characterization of p-adic Ruban continued fractions, J. Austral. Math. Soc. A 39 (1985), 300-305. Zbl0582.10021
  14. [14] K. Mahler, Zur Approximation p-adischer Irrationalzahlen, Nieuw Arch. Wisk. 18 (1934), 22-34. Zbl60.0163.02
  15. [15] R. Paysant-Le Roux and E. Dubois, Étude métrique de l'algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad. Sci. Paris A 275 (1972), 683-686. Zbl0254.10046
  16. [16] O. Perron, Irrationalzahlen, Chelsea, 1951. 
  17. [17] A. A. Ruban, Some metric properties of p-adic numbers, Siberian Math. J. 11 (1970), 176-180. Zbl0213.32701
  18. [18] T. Salát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czechoslovak Math. J. 18 (1968), 489-522. Zbl0162.34703
  19. [19] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984. 
  20. [20] V. G. Sprindžuk, Mahler's Problem in Metric Number Theory, Amer. Math. Soc., 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.