A certain power series associatedwith a Beatty sequence
Acta Arithmetica (1996)
- Volume: 76, Issue: 2, page 109-129
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] P. Bundschuh, Über eine Klasse reeller Transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119. Zbl0425.10038
- [2] A. S. Fraenkel, M. Mushkin and U. Tassa, Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.
- [3] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y], Japan. J. Math. 16 (1990), 287-306. Zbl0721.11009
- [4] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Austral. Math. Soc. 51 (1995), 337-351. Zbl0829.11012
- [5] T. Komatsu, The fractional part of nθ+ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406. Zbl0849.11027
- [6] T. Komatsu, A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, to appear. Zbl0872.11033
- [7] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, III, Bull. Austral. Math. Soc. 16 (1977), 15-47. Zbl0339.10028
- [8] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. Zbl55.0115.01
- [9] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of a certain power series, J. Number Theory 42 (1992), 61-87. Zbl0770.11039
- [10] B. A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.