Substitution invariant sturmian bisequences
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 1, page 201-210
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topParvaix, Bruno. "Substitution invariant sturmian bisequences." Journal de théorie des nombres de Bordeaux 11.1 (1999): 201-210. <http://eudml.org/doc/248339>.
@article{Parvaix1999,
abstract = {We prove that a Sturmian bisequence, with slope $\alpha $ and intercept $\rho $, is fixed by some non-trivial substitution if and only if $\alpha $ is a Sturm number and $\rho $ belongs to $\mathbb \{Q\}(\alpha )$. We also detail a complementary system of integers connected with Beatty bisequences.},
author = {Parvaix, Bruno},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Beatty sequences; Sturmian bisequences; Sturmian sequences; Sturmian number},
language = {eng},
number = {1},
pages = {201-210},
publisher = {Université Bordeaux I},
title = {Substitution invariant sturmian bisequences},
url = {http://eudml.org/doc/248339},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Parvaix, Bruno
TI - Substitution invariant sturmian bisequences
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 201
EP - 210
AB - We prove that a Sturmian bisequence, with slope $\alpha $ and intercept $\rho $, is fixed by some non-trivial substitution if and only if $\alpha $ is a Sturm number and $\rho $ belongs to $\mathbb {Q}(\alpha )$. We also detail a complementary system of integers connected with Beatty bisequences.
LA - eng
KW - Beatty sequences; Sturmian bisequences; Sturmian sequences; Sturmian number
UR - http://eudml.org/doc/248339
ER -
References
top- [1] T. Bang, On the sequence [nα], Math. Scand.5 (1957), 69-76. Zbl0084.04401
- [2] S. Beatty, Problem 3173, Amer. Math. Monthly33 (1926) 159. Solutions, ibid., 34 (1927) 159. JFM53.0198.06
- [3] J. Berstel, Recent results on Sturmian words, in: J. Dassow (Ed.), Proc. DLT'95, World Scientific, Singapore (1996). Zbl1096.68689MR1466181
- [4] J. Berstel and P. Séébold, A characterization of Sturmian morphisms, Lect. Notes Comp. Sci. 711 (1993), 281-290. Zbl0925.11026MR1265070
- [5] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc.1 (1994), 175-189. Zbl0803.68095MR1318967
- [6] J.M. Borwein and P.B. Borwein, On the generating function of the integer part [nα + γ], J. Number Theory43 (1993), 293-318. Zbl0778.11039
- [7] D. Bowman, Approximation of [nα + s and the zero of {nα + s}, J. Number Theory50 (1995), 128-144. Zbl0823.11037
- [8] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull.36 (1993), 15-21. Zbl0804.11021MR1205889
- [9] I.G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull.2 (1959), 190-197. Zbl0092.27801MR109093
- [10] I.G. Connell, Some properties of Beatty sequences II, Canad. Math. Bull.3 (1960), 17-22. Zbl0090.03203MR110683
- [11] E. Coven and G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
- [12] D. Crisp, W. Moran, A. Pollington and P. Shiue, Substitution invariant cutting sequences, J. Théorie des Nombres de Bordeaux5 (1993), 123-137. Zbl0786.11041MR1251232
- [13] A.S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly84 (1977), 114-115. Zbl0359.10048MR429815
- [14] A.S. Fraenkel, J. Levitt and M. Shimshoni, Characterization of the set of values f(n) = [nα], Discrete Math.2 (1972), 335-345. Zbl0246.10005
- [15] A.S. Fraenkel, M. Mushkin and U. Tassa, Determination of nθby its sequence of differences, Canad. Math. Bull.21 (1978), 441-446. Zbl0401.10018
- [16] A.S. Fraenkel and R. Holzman, Gap problems for integer part and fractional part sequences, J. Number Theory50 (1995), 66-86. Zbl0822.11021MR1310736
- [17] R.L. Graham, Covering the positive integers by disjoint sets of the form {nα + β]: n = 1, 2, ... }, J. Comb. Theor. Ser.A15 (1973), 354-358. Zbl0279.10042
- [18] S. Ito, On a dynamical system related to sequences nx + y - L(n - 1)x + y], Dynamical Systems and Related Topics, Nagoya (1990), 192-197. MR1164888
- [19] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math.16 (1990), 287-306. Zbl0721.11009MR1091163
- [20] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Aust. Math. Soc.51 (1995), 337-351. Zbl0829.11012MR1322798
- [21] T. Komatsu, The fractional part of nθ + ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux7 (1995), 387-406. Zbl0849.11027
- [22] T. Komatsu, A certain power series associated with a Beatty sequence, Acta Arith.LXXVI (1996),109-129. Zbl0858.11013MR1393509
- [23] T. Komatsu and A. J. van der Poorten, Substitution invariant Beatty sequences, Japan. J. Math.22 (1996), 349-354. Zbl0868.11015MR1432380
- [24] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux5 (1993), 221-233. Zbl0797.11029MR1265903
- [25] M. Morse and G.A. Hedlund, Symbolic Dynamics, Amer. J. Math.60 (1938), 815-866. Zbl0019.33502MR1507944JFM64.0798.04
- [26] M. Morse and G.A. Hedlund, Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [27] B. Parvaix, Propriétés d'invariance des mots sturmiens, J. Théorie des Nombres de Bordeaux9 (1997), 351-369. Zbl0904.11008MR1617403
- [28] J. Rosenblatt, The sequence of greatest integers of an arithmetic progression, J. Lond. Math. Soc.17 (1978), 213-218. Zbl0383.10036MR480409
- [29] K.B. Stolarsky, Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull.19 (1976), 473-482. Zbl0359.10028MR444558
- [30] R. Tijdeman, On disjoint pairs of Sturmian bisequences, Mathematical Institute, Leiden University, Report W96-02 (1996). Zbl0862.68085
- [31] R. Tijdeman, On complementary triples of Sturmian bisequences, Indag. Math.7 (1996), 419-424. Zbl0862.68085MR1621393
Citations in EuDML Documents
top- P. Dartnell, F. Durand, A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts
- Petr Ambrož, Zuzana Masáková, Edita Pelantová, Christiane Frougny, Palindromic complexity of infinite words associated with simple Parry numbers
- Valérie Berthé, Hiromi Ei, Shunji Ito, Hui Rao, On substitution invariant Sturmian words: an application of Rauzy fractals
- Petr Ambrož, Zuzana Masáková, Edita Pelantová, Morphisms fixing words associated with exchange of three intervals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.