Substitution invariant sturmian bisequences

Bruno Parvaix

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 201-210
  • ISSN: 1246-7405

Abstract

top
We prove that a Sturmian bisequence, with slope α and intercept ρ , is fixed by some non-trivial substitution if and only if α is a Sturm number and ρ belongs to ( α ) . We also detail a complementary system of integers connected with Beatty bisequences.

How to cite

top

Parvaix, Bruno. "Substitution invariant sturmian bisequences." Journal de théorie des nombres de Bordeaux 11.1 (1999): 201-210. <http://eudml.org/doc/248339>.

@article{Parvaix1999,
abstract = {We prove that a Sturmian bisequence, with slope $\alpha $ and intercept $\rho $, is fixed by some non-trivial substitution if and only if $\alpha $ is a Sturm number and $\rho $ belongs to $\mathbb \{Q\}(\alpha )$. We also detail a complementary system of integers connected with Beatty bisequences.},
author = {Parvaix, Bruno},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Beatty sequences; Sturmian bisequences; Sturmian sequences; Sturmian number},
language = {eng},
number = {1},
pages = {201-210},
publisher = {Université Bordeaux I},
title = {Substitution invariant sturmian bisequences},
url = {http://eudml.org/doc/248339},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Parvaix, Bruno
TI - Substitution invariant sturmian bisequences
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 201
EP - 210
AB - We prove that a Sturmian bisequence, with slope $\alpha $ and intercept $\rho $, is fixed by some non-trivial substitution if and only if $\alpha $ is a Sturm number and $\rho $ belongs to $\mathbb {Q}(\alpha )$. We also detail a complementary system of integers connected with Beatty bisequences.
LA - eng
KW - Beatty sequences; Sturmian bisequences; Sturmian sequences; Sturmian number
UR - http://eudml.org/doc/248339
ER -

References

top
  1. [1] T. Bang, On the sequence [nα], Math. Scand.5 (1957), 69-76. Zbl0084.04401
  2. [2] S. Beatty, Problem 3173, Amer. Math. Monthly33 (1926) 159. Solutions, ibid., 34 (1927) 159. JFM53.0198.06
  3. [3] J. Berstel, Recent results on Sturmian words, in: J. Dassow (Ed.), Proc. DLT'95, World Scientific, Singapore (1996). Zbl1096.68689MR1466181
  4. [4] J. Berstel and P. Séébold, A characterization of Sturmian morphisms, Lect. Notes Comp. Sci. 711 (1993), 281-290. Zbl0925.11026MR1265070
  5. [5] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc.1 (1994), 175-189. Zbl0803.68095MR1318967
  6. [6] J.M. Borwein and P.B. Borwein, On the generating function of the integer part [nα + γ], J. Number Theory43 (1993), 293-318. Zbl0778.11039
  7. [7] D. Bowman, Approximation of [nα + s and the zero of {nα + s}, J. Number Theory50 (1995), 128-144. Zbl0823.11037
  8. [8] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull.36 (1993), 15-21. Zbl0804.11021MR1205889
  9. [9] I.G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull.2 (1959), 190-197. Zbl0092.27801MR109093
  10. [10] I.G. Connell, Some properties of Beatty sequences II, Canad. Math. Bull.3 (1960), 17-22. Zbl0090.03203MR110683
  11. [11] E. Coven and G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
  12. [12] D. Crisp, W. Moran, A. Pollington and P. Shiue, Substitution invariant cutting sequences, J. Théorie des Nombres de Bordeaux5 (1993), 123-137. Zbl0786.11041MR1251232
  13. [13] A.S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly84 (1977), 114-115. Zbl0359.10048MR429815
  14. [14] A.S. Fraenkel, J. Levitt and M. Shimshoni, Characterization of the set of values f(n) = [nα], Discrete Math.2 (1972), 335-345. Zbl0246.10005
  15. [15] A.S. Fraenkel, M. Mushkin and U. Tassa, Determination of nθby its sequence of differences, Canad. Math. Bull.21 (1978), 441-446. Zbl0401.10018
  16. [16] A.S. Fraenkel and R. Holzman, Gap problems for integer part and fractional part sequences, J. Number Theory50 (1995), 66-86. Zbl0822.11021MR1310736
  17. [17] R.L. Graham, Covering the positive integers by disjoint sets of the form {nα + β]: n = 1, 2, ... }, J. Comb. Theor. Ser.A15 (1973), 354-358. Zbl0279.10042
  18. [18] S. Ito, On a dynamical system related to sequences nx + y - L(n - 1)x + y], Dynamical Systems and Related Topics, Nagoya (1990), 192-197. MR1164888
  19. [19] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math.16 (1990), 287-306. Zbl0721.11009MR1091163
  20. [20] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Aust. Math. Soc.51 (1995), 337-351. Zbl0829.11012MR1322798
  21. [21] T. Komatsu, The fractional part of nθ + ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux7 (1995), 387-406. Zbl0849.11027
  22. [22] T. Komatsu, A certain power series associated with a Beatty sequence, Acta Arith.LXXVI (1996),109-129. Zbl0858.11013MR1393509
  23. [23] T. Komatsu and A. J. van der Poorten, Substitution invariant Beatty sequences, Japan. J. Math.22 (1996), 349-354. Zbl0868.11015MR1432380
  24. [24] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux5 (1993), 221-233. Zbl0797.11029MR1265903
  25. [25] M. Morse and G.A. Hedlund, Symbolic Dynamics, Amer. J. Math.60 (1938), 815-866. Zbl0019.33502MR1507944JFM64.0798.04
  26. [26] M. Morse and G.A. Hedlund, Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
  27. [27] B. Parvaix, Propriétés d'invariance des mots sturmiens, J. Théorie des Nombres de Bordeaux9 (1997), 351-369. Zbl0904.11008MR1617403
  28. [28] J. Rosenblatt, The sequence of greatest integers of an arithmetic progression, J. Lond. Math. Soc.17 (1978), 213-218. Zbl0383.10036MR480409
  29. [29] K.B. Stolarsky, Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull.19 (1976), 473-482. Zbl0359.10028MR444558
  30. [30] R. Tijdeman, On disjoint pairs of Sturmian bisequences, Mathematical Institute, Leiden University, Report W96-02 (1996). Zbl0862.68085
  31. [31] R. Tijdeman, On complementary triples of Sturmian bisequences, Indag. Math.7 (1996), 419-424. Zbl0862.68085MR1621393

Citations in EuDML Documents

top
  1. P. Dartnell, F. Durand, A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts
  2. Petr Ambrož, Zuzana Masáková, Edita Pelantová, Christiane Frougny, Palindromic complexity of infinite words associated with simple Parry numbers
  3. Valérie Berthé, Hiromi Ei, Shunji Ito, Hui Rao, On substitution invariant Sturmian words: an application of Rauzy fractals
  4. Petr Ambrož, Zuzana Masáková, Edita Pelantová, Morphisms fixing words associated with exchange of three intervals

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.