The fractional part of n θ + ø and Beatty sequences

Takao Komatsu

Journal de théorie des nombres de Bordeaux (1995)

  • Volume: 7, Issue: 2, page 387-406
  • ISSN: 1246-7405

How to cite

top

Komatsu, Takao. "The fractional part of $n\theta + ø$ and Beatty sequences." Journal de théorie des nombres de Bordeaux 7.2 (1995): 387-406. <http://eudml.org/doc/247659>.

@article{Komatsu1995,
author = {Komatsu, Takao},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {continued fraction; Beatty sequence; one-sided approximations; sorting problem; characteristic word},
language = {eng},
number = {2},
pages = {387-406},
publisher = {Université Bordeaux I},
title = {The fractional part of $n\theta + ø$ and Beatty sequences},
url = {http://eudml.org/doc/247659},
volume = {7},
year = {1995},
}

TY - JOUR
AU - Komatsu, Takao
TI - The fractional part of $n\theta + ø$ and Beatty sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 2
SP - 387
EP - 406
LA - eng
KW - continued fraction; Beatty sequence; one-sided approximations; sorting problem; characteristic word
UR - http://eudml.org/doc/247659
ER -

References

top
  1. [1] J.M. Borwein and P.B. Borwein, On the generating function of the integer part: [nα + γ], J. Number Theory43 (1993), 293-318. Zbl0778.11039
  2. [2] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull36 (1993), 15-21. Zbl0804.11021MR1205889
  3. [3] L.V. Danilov, Some class of transcendental numbers, Mat. Zametki12 (1972), 149-154= Math. Notes12 (1972), 524-527. Zbl0253.10026MR316391
  4. [4] A.S. Fraenkel, M. Mushkin and U. Tassa, Determination of [nθ] by its sequence of differences, Canad. Math. Bull.21 (1978), 441-446. Zbl0401.10018
  5. [5] Sh. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx + y] - [(n - 1)x + y], Japan. J. Math.16 (1990), 287-306. Zbl0721.11009MR1091163
  6. [6] T. Komatsu, A certain power series associated with Beatty sequences, manuscript. Zbl0858.11013
  7. [7] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Austral. Math. Soc.51 (1995), 337-351. Zbl0829.11012MR1322798
  8. [8] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of certain power series, J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
  9. [9] T. Van Ravenstein, The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. (Series A) 45 (1988), 360-370. Zbl0663.10039MR957201
  10. [10] T. Van Ravenstein, G. Winley and K. Tognetti, Characteristics and the three gap theorem, Fibonacci Quarterly28 (1990), 204-214. Zbl0709.11011MR1064404
  11. [11] K.B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull.19 (1976), 473-482. Zbl0359.10028MR444558
  12. [12] B.A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970. Zbl0204.37101MR265267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.