On sums of five almost equal prime squares
Acta Arithmetica (1996)
- Volume: 77, Issue: 4, page 369-383
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJianya Liu, and Tao Zhan. "On sums of five almost equal prime squares." Acta Arithmetica 77.4 (1996): 369-383. <http://eudml.org/doc/206926>.
@article{JianyaLiu1996,
author = {Jianya Liu, Tao Zhan},
journal = {Acta Arithmetica},
keywords = {Waring-Goldbach problem; circle method; exponential sums over primes},
language = {eng},
number = {4},
pages = {369-383},
title = {On sums of five almost equal prime squares},
url = {http://eudml.org/doc/206926},
volume = {77},
year = {1996},
}
TY - JOUR
AU - Jianya Liu
AU - Tao Zhan
TI - On sums of five almost equal prime squares
JO - Acta Arithmetica
PY - 1996
VL - 77
IS - 4
SP - 369
EP - 383
LA - eng
KW - Waring-Goldbach problem; circle method; exponential sums over primes
UR - http://eudml.org/doc/206926
ER -
References
top- [1] F. C. Auluck and S. Chowla, The representation of a large number as a sum of 'almost equal' squares, Proc. Indian Acad. Sci. Sect. A 6 (1937), 81-82. Zbl0017.15109
- [2] A. Balog and A. Perelli, Exponential sums over primes in short intervals, Acta Math. Hungar. 48 (1986), 223-228. Zbl0612.10031
- [3] H. Davenport, Multiplicative Number Theory, 2nd ed., revised by H. L. Montgomery, Springer, 1980. Zbl0453.10002
- [4] A. Ghosh, The distribution of αp² modulo one, Proc. London Math. Soc. (3) 42 (1981), 252-269. Zbl0397.10026
- [5] G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249-254. Zbl0465.10029
- [6] L.-K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80. Zbl0018.29404
- [7] C.-H. Jia, Three prime theorem in short intervals (VII), Acta Math. Sinica 10 (1994), 369-387. Zbl0847.11054
- [8] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (I), to appear. Zbl0922.11070
- [9] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (II), in: Proceedings of the Halberstam Conference on Analytic Number Theory, Birkhäuser, 1996, to appear. Zbl0858.11044
- [10] C. D. Pan and C. B. Pan, On estimations of trigonometric sums over primes in short intervals (III), Chinese Ann. Math. Ser. B 11 (1990), 138-147. Zbl0714.11050
- [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, 1988. Zbl0042.07901
- [12] R. C. Vaughan, An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Academic Press, 1981, 341-348.
- [13] I. M. Vinogradov, Estimation of certain trigonometric sums with prime variables, Izv. Akad. Nauk SSSR Ser. Mat. 3 (1939), 371-398 (in Russian).
- [14] E. M. Wright, The representation of a number as a sum of three or four squares, Proc. London Math. Soc. 42 (1937), 481-500. Zbl0016.29004
- [15] T. Zhan, On the representation of large odd integers as sum of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 159-272. Zbl0742.11048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.