Explicit 4-descents on an elliptic curve

J. R. Merriman; S. Siksek; N. P. Smart

Acta Arithmetica (1996)

  • Volume: 77, Issue: 4, page 385-404
  • ISSN: 0065-1036

How to cite

top

J. R. Merriman, S. Siksek, and N. P. Smart. "Explicit 4-descents on an elliptic curve." Acta Arithmetica 77.4 (1996): 385-404. <http://eudml.org/doc/206927>.

@article{J1996,
author = {J. R. Merriman, S. Siksek, N. P. Smart},
journal = {Acta Arithmetica},
keywords = {elliptic curves; Computational Number Theory; generators of an elliptic curve; homogeneous space; descent; Tate-Shafarevich group},
language = {eng},
number = {4},
pages = {385-404},
title = {Explicit 4-descents on an elliptic curve},
url = {http://eudml.org/doc/206927},
volume = {77},
year = {1996},
}

TY - JOUR
AU - J. R. Merriman
AU - S. Siksek
AU - N. P. Smart
TI - Explicit 4-descents on an elliptic curve
JO - Acta Arithmetica
PY - 1996
VL - 77
IS - 4
SP - 385
EP - 404
LA - eng
KW - elliptic curves; Computational Number Theory; generators of an elliptic curve; homogeneous space; descent; Tate-Shafarevich group
UR - http://eudml.org/doc/206927
ER -

References

top
  1. [1] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7-25. Zbl0118.27601
  2. [2] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. Zbl0147.02506
  3. [3] A. Bremner, On the equation y² = x(x²+p), in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 3-23. 
  4. [4] A. Bremner and J. W. S. Cassels, On the equation y² = x(x²+p), Math. Comp. 42 (1984), 257-264. Zbl0531.10014
  5. [5] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193-291. Zbl0138.27002
  6. [6] J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry Papers Dedicated to I. R. Shafarevich on the Occasion of his Sixtieth Birthday, Vol. 1, Birkhäuser, 1983, 29-60. 
  7. [7] J. W. S. Cassels, Local Fields, London Math. Soc. Student Texts, Cambridge University Press, 1986. 
  8. [8] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Student Texts, Cambridge University Press, 1991. 
  9. [9] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, Berlin, 1993. Zbl0786.11071
  10. [10] I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467. Zbl0759.11021
  11. [11] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. Zbl0758.14042
  12. [12] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta. Arith. 68 (1994), 171-192. Zbl0816.11019
  13. [13] J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over ℚ, in: Elliptic Curves and Related Topics, H. Kisilevsky and M. Ram Murty (eds.), CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994. Zbl0809.14024
  14. [14] M. J. Greenberg, Lectures on Forms in Many Variables, W. A. Benjamin, 1969. 
  15. [15] W. H. Greub, Linear Algebra, Springer, 1967. 
  16. [16] M. J. Razar, A relation between the two component of the Tate-Šafarevič group and L(1) for certain elliptic curves, Amer. J. Math. 96 (1974), 127-144. Zbl0296.14016
  17. [17] S. Siksek, Descents on Curves of Genus 1, PhD thesis, Exeter University, 1995. 
  18. [18] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. Zbl0852.11028
  19. [19] S. Siksek and N. P. Smart, On the complexity of computing the 2-Selmer group of an elliptic curve, preprint, 1995. Zbl0915.11032
  20. [20] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. Zbl0585.14026
  21. [21] N. P. Smart, S-integral points on elliptic curves, Proc. Cambridge Philos. Soc. 116 (1994), 391-399. Zbl0817.11031
  22. [22] N. P. Smart and N. M. Stephens, Integral points on elliptic curves over number fields, Proc. Cambridge Philos. Soc., to appear, 1996. Zbl0881.11054
  23. [23] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta. Arith. 67 (1994), 177-196. Zbl0805.11026
  24. [24] H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms, Acta. Arith. 9 (1964), 261-270. Zbl0128.04702
  25. [25] J. A. Todd, Projective and Analytical Geometry, Pitman, 1947. 
  26. [26] A. Weil, Number Theory. An Approach Through History, Birkhäuser, 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.