Rational points on curves

Michael Stoll[1]

  • [1] Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany.

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 257-277
  • ISSN: 1246-7405

Abstract

top
This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve  C over  . The focus is on practical aspects of this problem in the case that the genus of  C is at least  2 , and therefore the set of rational points is finite.

How to cite

top

Stoll, Michael. "Rational points on curves." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 257-277. <http://eudml.org/doc/219805>.

@article{Stoll2011,
abstract = {This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve $C$ over $\mathbb\{Q\}$. The focus is on practical aspects of this problem in the case that the genus of $C$ is at least $2$, and therefore the set of rational points is finite.},
affiliation = {Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany.},
author = {Stoll, Michael},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Algebraic curves; rational points; Chabauty method; Jacobian; Mordell-Weil sieve},
language = {eng},
month = {3},
number = {1},
pages = {257-277},
publisher = {Société Arithmétique de Bordeaux},
title = {Rational points on curves},
url = {http://eudml.org/doc/219805},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Stoll, Michael
TI - Rational points on curves
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 257
EP - 277
AB - This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve $C$ over $\mathbb{Q}$. The focus is on practical aspects of this problem in the case that the genus of $C$ is at least $2$, and therefore the set of rational points is finite.
LA - eng
KW - Algebraic curves; rational points; Chabauty method; Jacobian; Mordell-Weil sieve
UR - http://eudml.org/doc/219805
ER -

References

top
  1. M.J. Bright, N. Bruin, E.V. Flynn, A. Logan,The Brauer-Manin obstruction and Ш [ 2 ] , LMS J. Comput. Math. 10 (2007), 354–377. Zbl1222.11084MR2342713
  2. N. Bruin,Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract 133, 77 pages (2002). Zbl1043.11029MR1916903
  3. N. Bruin,Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49. Zbl1135.11320MR2011330
  4. N. Bruin, N.D. Elkies,Trinomials a x 7 + b x + c and a x 8 + b x + c with Galois groups of order 168 and 8 · 168 , in: Algorithmic number theory, Sydney 2002, Lecture Notes in Comput. Sci. 2369, Springer, Berlin (2002), pp. 172–188. Zbl1058.11044MR2041082
  5. N. Bruin, E.V. Flynn,Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 4329–4347. Zbl1145.11317MR2156713
  6. N. Bruin, E.V. Flynn,Exhibiting SHA [ 2 ] on hyperelliptic Jacobians, J. Number Theory 118 (2006), 266–291. Zbl1118.14035MR2225283
  7. N. Bruin, M. Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), 181–189. Zbl1218.11065MR2433884
  8. N. Bruin, M. Stoll,2-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 2347–2370. Zbl1208.11078MR2521292
  9. N. Bruin, M. Stoll,The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. Zbl1278.11069MR2685127
  10. Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, Sz. Tengely,Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859–885. Zbl1168.11026MR2457355
  11. J.W.S. Cassels,Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101–127. Zbl0883.11028MR1604468
  12. J.W.S. Cassels, E.V. Flynn,Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996. Zbl0857.14018MR1406090
  13. C. Chabauty,Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. Zbl67.0105.01MR4484
  14. C. Chevalley, A. Weil,Un théorème d’arithmétique sur les courbes algébriques, Comptes Rendus Hebdomadaires des Séances de l’Acad. des Sci., Paris 195 (1932), 570–572. Zbl0005.21611
  15. R.F. Coleman,Effective Chabauty, Duke Math. J. 52 (1985), 765–770. Zbl0588.14015MR808103
  16. J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon, M. Stoll,Explicit n -descent on elliptic curves.I. Algebra, J. reine angew. Math. 615 (2008), 121–155. II. Geometry, J. reine angew. Math. 632 (2009), 63–84. III. Algorithms, in preparation. Zbl1243.11068MR2384334
  17. J.E. Cremona, T.A. Fisher, M. Stoll,Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), 763–820. Zbl1222.11073MR2728489
  18. B. Creutz,Explicit second p -descent on elliptic curves, PhD Thesis, Jacobs University Bremen, 2010. 
  19. V.A. Dem’janenko,Rational points of a class of algebraic curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1373–1396. Zbl0181.24001MR205991
  20. T. Dokchitser,Computing special values of motivic L -functions, Experiment. Math. 13 (2004), 137–149. Zbl1139.11317MR2068888
  21. G. Faltings,Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366. Zbl0588.14026MR718935
  22. E.V. Flynn,An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003–3015. Zbl0864.11033MR1297525
  23. E.V. Flynn,A flexible method for applying Chabauty’s theorem, Compositio Math. 105 (1997), 79–94. Zbl0882.14009MR1436746
  24. E.V. Flynn,The Hasse Principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), 437–466. Zbl1069.11023MR2103661
  25. E.V. Flynn,Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129 (2009), 369–380. Zbl1184.11021MR2515488
  26. E.V. Flynn, B. Poonen, E.F. Schaefer,Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J. 90 (1997), 435–463. Zbl0958.11024MR1480542
  27. E.V. Flynn, N.P. Smart,Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), 333–352. Zbl0895.11026MR1450916
  28. M. Girard, L. Kulesz,Computation of sets of rational points of genus-3 curves via the Dem’janenko-Manin method, LMS J. Comput. Math. 8 (2005), 267–300. Zbl1108.14017MR2193214
  29. Su-Ion Ih,Height uniformity for algebraic points on curves, Compositio Math. 134 (2002), 35–57. Zbl1031.11041MR1931961
  30. V.A. Kolyvagin,Finiteness of E ( ) and Ш ( E , ) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 52 (1988), 522–540. Zbl0662.14017MR954295
  31. A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász,Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534. Zbl0488.12001MR682664
  32. A. Logan, R. van Luijk,Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), 441–483. Zbl1215.11059MR2448716
  33. Y. Manin,The p -torsion of elliptic curves is uniformly bounded (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465. Zbl0191.19601MR272786
  34. J.R. Merriman, S. Siksek, N.P. Smart,Explicit 4 -descents on an elliptic curve, Acta Arith. 77 (1996), 385–404. Zbl0873.11036MR1414518
  35. L.J. Mordell,On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192. 
  36. B. Poonen,Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), 415–420. Zbl1173.11040MR2293593
  37. B. Poonen, E.F. Schaefer,Explicit descent for Jacobians of cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141–188. Zbl0888.11023MR1465369
  38. B. Poonen, E.F. Schaefer, M. Stoll,Twists of X ( 7 ) and primitive solutions to x 2 + y 3 = z 7 , Duke Math. J. 137 (2007), 103–158. Zbl1124.11019MR2309145
  39. B. Poonen, M. Stoll,A local-global principle for densities, in: Scott D. Ahlgren (ed.) et al.: Topics in number theory. In honor of B. Gordon and S. Chowla. Kluwer Academic Publishers, Dordrecht. Math. Appl., Dordr. 467 (1999), 241–244. Zbl1024.11047MR1691323
  40. E.F. Schaefer,Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447–471. Zbl0889.11021MR1612262
  41. V. Scharaschkin,Local-global problems and the Brauer-Manin obstruction, Ph.D. thesis, University of Michigan (1999). Zbl0938.11053MR2700328
  42. J.-P. Serre,Algebraic groups and class fields, Springer GTM 117, Springer Verlag, 1988. Zbl0703.14001MR918564
  43. J.-P. Serre,Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989. Zbl0676.14005MR1002324
  44. S. Siksek, M. Stoll,On a problem of Hajdu and Tengely, in: G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 316–330. Springer Verlag, Heidelberg, 2010. Zbl1257.11033
  45. D. Simon,Solving quadratic equations using reduced unimodular quadratic forms, Math. Comp. 74 (2005), 1531–1543. Zbl1078.11072MR2137016
  46. S. Stamminger,Explicit 8-descent on elliptic curves, PhD thesis, International University Bremen (2005). 
  47. M. Stoll,On the height constant for curves of genus two, Acta Arith. 90 (1999), 183–201. Zbl0932.11043MR1709054
  48. M. Stoll,Implementing 2-descent on Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245–277. Zbl0972.11058MR1829626
  49. M. Stoll,On the height constant for curves of genus two, II, Acta Arith. 104 (2002), 165–182. Zbl1139.11318MR1914251
  50. M. Stoll,Descent on Elliptic Curves. Short Course taught at IHP in Paris, October 2004. arXiv:math/0611694v1 [math.NT]. 
  51. M. Stoll,Independence of rational points on twists of a given curve, Compositio Math. 142 (2006), 1201–1214. Zbl1128.11033MR2264661
  52. M. Stoll,Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), 349–391. Zbl1167.11024MR2368954
  53. M. Stoll,Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380. Zbl1222.11083MR2465796
  54. M. Stoll,On the average number of rational points on curves of genus 2, Preprint (2009), arXiv:0902.4165v1 [math.NT]. 
  55. M. Stoll,Documentation for the ratpoints program, Manuscript (2009), arXiv:0803.3165 [math.NT]. 
  56. A. Weil,L’arithmétique sur les courbes algébriques, Acta Math. 52 (1929), 281–315. MR1555278
  57. J.L. Wetherell,Bounding the number of rational points on certain curves of high rank, Ph.D. thesis, University of California (1997). MR2696280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.