Rational points on curves
- [1] Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany.
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 1, page 257-277
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topStoll, Michael. "Rational points on curves." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 257-277. <http://eudml.org/doc/219805>.
@article{Stoll2011,
abstract = {This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve $C$ over $\mathbb\{Q\}$. The focus is on practical aspects of this problem in the case that the genus of $C$ is at least $2$, and therefore the set of rational points is finite.},
affiliation = {Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany.},
author = {Stoll, Michael},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Algebraic curves; rational points; Chabauty method; Jacobian; Mordell-Weil sieve},
language = {eng},
month = {3},
number = {1},
pages = {257-277},
publisher = {Société Arithmétique de Bordeaux},
title = {Rational points on curves},
url = {http://eudml.org/doc/219805},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Stoll, Michael
TI - Rational points on curves
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 257
EP - 277
AB - This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve $C$ over $\mathbb{Q}$. The focus is on practical aspects of this problem in the case that the genus of $C$ is at least $2$, and therefore the set of rational points is finite.
LA - eng
KW - Algebraic curves; rational points; Chabauty method; Jacobian; Mordell-Weil sieve
UR - http://eudml.org/doc/219805
ER -
References
top- M.J. Bright, N. Bruin, E.V. Flynn, A. Logan,The Brauer-Manin obstruction and , LMS J. Comput. Math. 10 (2007), 354–377. Zbl1222.11084MR2342713
- N. Bruin,Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract 133, 77 pages (2002). Zbl1043.11029MR1916903
- N. Bruin,Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49. Zbl1135.11320MR2011330
- N. Bruin, N.D. Elkies,Trinomials and with Galois groups of order and , in: Algorithmic number theory, Sydney 2002, Lecture Notes in Comput. Sci. 2369, Springer, Berlin (2002), pp. 172–188. Zbl1058.11044MR2041082
- N. Bruin, E.V. Flynn,Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 4329–4347. Zbl1145.11317MR2156713
- N. Bruin, E.V. Flynn,Exhibiting SHA on hyperelliptic Jacobians, J. Number Theory 118 (2006), 266–291. Zbl1118.14035MR2225283
- N. Bruin, M. Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), 181–189. Zbl1218.11065MR2433884
- N. Bruin, M. Stoll,2-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 2347–2370. Zbl1208.11078MR2521292
- N. Bruin, M. Stoll,The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. Zbl1278.11069MR2685127
- Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, Sz. Tengely,Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859–885. Zbl1168.11026MR2457355
- J.W.S. Cassels,Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101–127. Zbl0883.11028MR1604468
- J.W.S. Cassels, E.V. Flynn,Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996. Zbl0857.14018MR1406090
- C. Chabauty,Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. Zbl67.0105.01MR4484
- C. Chevalley, A. Weil,Un théorème d’arithmétique sur les courbes algébriques, Comptes Rendus Hebdomadaires des Séances de l’Acad. des Sci., Paris 195 (1932), 570–572. Zbl0005.21611
- R.F. Coleman,Effective Chabauty, Duke Math. J. 52 (1985), 765–770. Zbl0588.14015MR808103
- J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon, M. Stoll,Explicit -descent on elliptic curves.I. Algebra, J. reine angew. Math. 615 (2008), 121–155. II. Geometry, J. reine angew. Math. 632 (2009), 63–84. III. Algorithms, in preparation. Zbl1243.11068MR2384334
- J.E. Cremona, T.A. Fisher, M. Stoll,Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), 763–820. Zbl1222.11073MR2728489
- B. Creutz,Explicit second -descent on elliptic curves, PhD Thesis, Jacobs University Bremen, 2010.
- V.A. Dem’janenko,Rational points of a class of algebraic curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1373–1396. Zbl0181.24001MR205991
- T. Dokchitser,Computing special values of motivic -functions, Experiment. Math. 13 (2004), 137–149. Zbl1139.11317MR2068888
- G. Faltings,Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366. Zbl0588.14026MR718935
- E.V. Flynn,An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003–3015. Zbl0864.11033MR1297525
- E.V. Flynn,A flexible method for applying Chabauty’s theorem, Compositio Math. 105 (1997), 79–94. Zbl0882.14009MR1436746
- E.V. Flynn,The Hasse Principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), 437–466. Zbl1069.11023MR2103661
- E.V. Flynn,Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129 (2009), 369–380. Zbl1184.11021MR2515488
- E.V. Flynn, B. Poonen, E.F. Schaefer,Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J. 90 (1997), 435–463. Zbl0958.11024MR1480542
- E.V. Flynn, N.P. Smart,Canonical heights on the Jacobians of curves of genus and the infinite descent, Acta Arith. 79 (1997), 333–352. Zbl0895.11026MR1450916
- M. Girard, L. Kulesz,Computation of sets of rational points of genus-3 curves via the Dem’janenko-Manin method, LMS J. Comput. Math. 8 (2005), 267–300. Zbl1108.14017MR2193214
- Su-Ion Ih,Height uniformity for algebraic points on curves, Compositio Math. 134 (2002), 35–57. Zbl1031.11041MR1931961
- V.A. Kolyvagin,Finiteness of and for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 52 (1988), 522–540. Zbl0662.14017MR954295
- A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász,Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534. Zbl0488.12001MR682664
- A. Logan, R. van Luijk,Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), 441–483. Zbl1215.11059MR2448716
- Y. Manin,The -torsion of elliptic curves is uniformly bounded (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465. Zbl0191.19601MR272786
- J.R. Merriman, S. Siksek, N.P. Smart,Explicit -descents on an elliptic curve, Acta Arith. 77 (1996), 385–404. Zbl0873.11036MR1414518
- L.J. Mordell,On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192.
- B. Poonen,Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), 415–420. Zbl1173.11040MR2293593
- B. Poonen, E.F. Schaefer,Explicit descent for Jacobians of cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141–188. Zbl0888.11023MR1465369
- B. Poonen, E.F. Schaefer, M. Stoll,Twists of and primitive solutions to , Duke Math. J. 137 (2007), 103–158. Zbl1124.11019MR2309145
- B. Poonen, M. Stoll,A local-global principle for densities, in: Scott D. Ahlgren (ed.) et al.: Topics in number theory. In honor of B. Gordon and S. Chowla. Kluwer Academic Publishers, Dordrecht. Math. Appl., Dordr. 467 (1999), 241–244. Zbl1024.11047MR1691323
- E.F. Schaefer,Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447–471. Zbl0889.11021MR1612262
- V. Scharaschkin,Local-global problems and the Brauer-Manin obstruction, Ph.D. thesis, University of Michigan (1999). Zbl0938.11053MR2700328
- J.-P. Serre,Algebraic groups and class fields, Springer GTM 117, Springer Verlag, 1988. Zbl0703.14001MR918564
- J.-P. Serre,Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989. Zbl0676.14005MR1002324
- S. Siksek, M. Stoll,On a problem of Hajdu and Tengely, in: G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 316–330. Springer Verlag, Heidelberg, 2010. Zbl1257.11033
- D. Simon,Solving quadratic equations using reduced unimodular quadratic forms, Math. Comp. 74 (2005), 1531–1543. Zbl1078.11072MR2137016
- S. Stamminger,Explicit 8-descent on elliptic curves, PhD thesis, International University Bremen (2005).
- M. Stoll,On the height constant for curves of genus two, Acta Arith. 90 (1999), 183–201. Zbl0932.11043MR1709054
- M. Stoll,Implementing 2-descent on Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245–277. Zbl0972.11058MR1829626
- M. Stoll,On the height constant for curves of genus two, II, Acta Arith. 104 (2002), 165–182. Zbl1139.11318MR1914251
- M. Stoll,Descent on Elliptic Curves. Short Course taught at IHP in Paris, October 2004. arXiv:math/0611694v1 [math.NT].
- M. Stoll,Independence of rational points on twists of a given curve, Compositio Math. 142 (2006), 1201–1214. Zbl1128.11033MR2264661
- M. Stoll,Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), 349–391. Zbl1167.11024MR2368954
- M. Stoll,Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380. Zbl1222.11083MR2465796
- M. Stoll,On the average number of rational points on curves of genus 2, Preprint (2009), arXiv:0902.4165v1 [math.NT].
- M. Stoll,Documentation for the ratpoints program, Manuscript (2009), arXiv:0803.3165 [math.NT].
- A. Weil,L’arithmétique sur les courbes algébriques, Acta Math. 52 (1929), 281–315. MR1555278
- J.L. Wetherell,Bounding the number of rational points on certain curves of high rank, Ph.D. thesis, University of California (1997). MR2696280
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.