Meilleures approximations d'un élément du tore 𝕋² et géométrie de la suite des multiples de cet élément

Nicolas Chevallier

Acta Arithmetica (1996)

  • Volume: 78, Issue: 1, page 19-35
  • ISSN: 0065-1036

How to cite

top

Nicolas Chevallier. "Meilleures approximations d'un élément du tore 𝕋² et géométrie de la suite des multiples de cet élément." Acta Arithmetica 78.1 (1996): 19-35. <http://eudml.org/doc/206930>.

@article{NicolasChevallier1996,
author = {Nicolas Chevallier},
journal = {Acta Arithmetica},
keywords = {best simultaneous diophantine approximation; continued fraction; metric theory; Voronoï diagram; Rokhlin tower; Voronoï diagrams},
language = {fre},
number = {1},
pages = {19-35},
title = {Meilleures approximations d'un élément du tore 𝕋² et géométrie de la suite des multiples de cet élément},
url = {http://eudml.org/doc/206930},
volume = {78},
year = {1996},
}

TY - JOUR
AU - Nicolas Chevallier
TI - Meilleures approximations d'un élément du tore 𝕋² et géométrie de la suite des multiples de cet élément
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 1
SP - 19
EP - 35
LA - fre
KW - best simultaneous diophantine approximation; continued fraction; metric theory; Voronoï diagram; Rokhlin tower; Voronoï diagrams
UR - http://eudml.org/doc/206930
ER -

References

top
  1. [Ca] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math. and Math. Phys. 45, Cambridge Univ. Press, 1965. 
  2. [Ch] N. Chevallier, Distances dans la suite des multiples d'un point du tore à deux dimensions, Acta Arith. 74 (1996), 47-59. 
  3. [H-W] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford University Press, 1971. 
  4. [L1] J. C. Lagarias, Some new results in simultaneous Diophantine approximation, in: Proc. of the Queen's Number Theory Conference 1979, P. Ribenboim (ed.), Queen's Papers in Pure and Appl. Math. 54, 1980, 453-474. 
  5. [L2] J. C. Lagarias, Best simultaneous Diophantine approximations I. Growth rates of best approximations denominators, Trans. Amer. Math. Soc. 272 (1982), 545-554. Zbl0495.10021
  6. [L3] J. C. Lagarias, Best simultaneous Diophantine approximations II. Behavior of consecutive best approximations, Pacific J. Math. 102 (1982), 61-88. Zbl0497.10025
  7. [L4] J. C. Lagarias, Geodesic multidimensional continued fractions, Proc. London Math. Soc. (3) 69 (1994), 464-488. Zbl0813.11040
  8. [Sp] V. G. Sprindžuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, D.C., 1979. 
  9. [Sz-Só] G. Szekeres and V. T. Sós, Rational approximation vectors, Acta Arith. 49 (1988), 255-261. Zbl0637.10024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.