The average least witness is 2

Ronald Joseph Burthe Jr.

Acta Arithmetica (1997)

  • Volume: 80, Issue: 4, page 327-341
  • ISSN: 0065-1036

How to cite

top

Ronald Joseph Burthe Jr.. "The average least witness is 2." Acta Arithmetica 80.4 (1997): 327-341. <http://eudml.org/doc/207047>.

@article{RonaldJosephBurtheJr1997,
author = {Ronald Joseph Burthe Jr.},
journal = {Acta Arithmetica},
keywords = {average least witness; primality testing; zero density estimate; Dirichlet -functions},
language = {eng},
number = {4},
pages = {327-341},
title = {The average least witness is 2},
url = {http://eudml.org/doc/207047},
volume = {80},
year = {1997},
}

TY - JOUR
AU - Ronald Joseph Burthe Jr.
TI - The average least witness is 2
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 4
SP - 327
EP - 341
LA - eng
KW - average least witness; primality testing; zero density estimate; Dirichlet -functions
UR - http://eudml.org/doc/207047
ER -

References

top
  1. [AGP] W. R. Alford, A. Granville and C. Pomerance, On the difficulty of finding reliable witnesses, in: L. M. Adleman and M. D. Huang (eds.), Algorithmic Number Theory, Lecture Notes in Comput. Sci. 877, Springer, Berlin, 1994, 1-16. Zbl0828.11074
  2. [B] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press, Cambridge, Mass., 1985. Zbl0572.10001
  3. [Bo] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225. Zbl0136.33004
  4. [Bu] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 13 (1963), 524-536. Zbl0123.04404
  5. [BE] D. A. Burgess and P. D. T. A. Elliott, The average of the least primitive root, Mathematika 15 (1968), 39-50. Zbl0174.08105
  6. [Bur] R. J. Burthe Jr., Upper bounds for least witnesses and generating sets, this volume, 311-326. 
  7. [C] M. D. Coleman, On the equation b₁p - b₂P₂ = b₃, J. Reine Angew. Math. 403 (1990), 1-66. 
  8. [D] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, New York, 1980. Zbl0453.10002
  9. [E1] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201-206. Zbl0074.27105
  10. [E2] P. Erdős, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), 163-170. Zbl0202.33002
  11. [G] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
  12. [HB] D. R. Heath-Brown, The density of zeros of Dirichlet's L-functions, Canad. J. Math. 31 (1979), 231-240. 
  13. [H] C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith. 8 (1963), 343-347. Zbl0121.04706
  14. [I] H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), 225-231. Zbl0378.10029
  15. [Ju1] M. Jutila, A statistical density theorem for L-functions with applications, Acta Arith. 16 (1969), 207-216. 
  16. [Ju2] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), 45-62. Zbl0363.10026
  17. [Ju3] M. Jutila, Zero-density estimates for L-functions, Acta Arith. 32 (1977), 55-62. 
  18. [LMO] J. L. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296. Zbl0401.12014
  19. [M] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), 97-108. Zbl0443.10002
  20. [Mo1] H. L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334-345. Zbl0204.37301
  21. [Mo2] H. L. Montgomery, Zeros of L-functions, Invent. Math., 346-354. Zbl0204.37401
  22. [Mo3] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, New York, 1971. 
  23. [Mo4] H. L. Montgomery, Zeros of L-functions, Chap. 9 of: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, R.I., 1994, 163-178. 
  24. [Mot] Y. Motohashi, Lectures on Sieve Methods and Prime Number Theory, Tata Institute of Fundamental Research, Springer, Bombay, 1983. 
  25. [P1] C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), 218-223. Zbl0436.10020
  26. [P2] C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593. Zbl0511.10002
  27. [R] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128-138. Zbl0426.10006
  28. [Ro] K. A. Rodosskiĭ, On non-residues and zeros of L-functions, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 303-306 (in Russian). 
  29. [Se] A. Selberg, Remarks on sieves, Proc. 1972 Number Theory Conference in Boulder, 1972, 205-216. 

NotesEmbed ?

top

You must be logged in to post comments.