The average least witness is 2
Acta Arithmetica (1997)
- Volume: 80, Issue: 4, page 327-341
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [AGP] W. R. Alford, A. Granville and C. Pomerance, On the difficulty of finding reliable witnesses, in: L. M. Adleman and M. D. Huang (eds.), Algorithmic Number Theory, Lecture Notes in Comput. Sci. 877, Springer, Berlin, 1994, 1-16. Zbl0828.11074
- [B] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press, Cambridge, Mass., 1985. Zbl0572.10001
- [Bo] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225. Zbl0136.33004
- [Bu] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 13 (1963), 524-536. Zbl0123.04404
- [BE] D. A. Burgess and P. D. T. A. Elliott, The average of the least primitive root, Mathematika 15 (1968), 39-50. Zbl0174.08105
- [Bur] R. J. Burthe Jr., Upper bounds for least witnesses and generating sets, this volume, 311-326.
- [C] M. D. Coleman, On the equation b₁p - b₂P₂ = b₃, J. Reine Angew. Math. 403 (1990), 1-66.
- [D] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, New York, 1980. Zbl0453.10002
- [E1] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201-206. Zbl0074.27105
- [E2] P. Erdős, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), 163-170. Zbl0202.33002
- [G] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
- [HB] D. R. Heath-Brown, The density of zeros of Dirichlet's L-functions, Canad. J. Math. 31 (1979), 231-240.
- [H] C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith. 8 (1963), 343-347. Zbl0121.04706
- [I] H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), 225-231. Zbl0378.10029
- [Ju1] M. Jutila, A statistical density theorem for L-functions with applications, Acta Arith. 16 (1969), 207-216.
- [Ju2] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), 45-62. Zbl0363.10026
- [Ju3] M. Jutila, Zero-density estimates for L-functions, Acta Arith. 32 (1977), 55-62.
- [LMO] J. L. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296. Zbl0401.12014
- [M] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), 97-108. Zbl0443.10002
- [Mo1] H. L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334-345. Zbl0204.37301
- [Mo2] H. L. Montgomery, Zeros of L-functions, Invent. Math., 346-354. Zbl0204.37401
- [Mo3] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, New York, 1971.
- [Mo4] H. L. Montgomery, Zeros of L-functions, Chap. 9 of: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, R.I., 1994, 163-178.
- [Mot] Y. Motohashi, Lectures on Sieve Methods and Prime Number Theory, Tata Institute of Fundamental Research, Springer, Bombay, 1983.
- [P1] C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), 218-223. Zbl0436.10020
- [P2] C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593. Zbl0511.10002
- [R] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128-138. Zbl0426.10006
- [Ro] K. A. Rodosskiĭ, On non-residues and zeros of L-functions, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 303-306 (in Russian).
- [Se] A. Selberg, Remarks on sieves, Proc. 1972 Number Theory Conference in Boulder, 1972, 205-216.