On Ramanujan congruences between special values of Hecke and Dirichlet L-functions

P. Guerzhoy

Acta Arithmetica (1997)

  • Volume: 81, Issue: 1, page 11-23
  • ISSN: 0065-1036

How to cite

top

P. Guerzhoy. "On Ramanujan congruences between special values of Hecke and Dirichlet L-functions." Acta Arithmetica 81.1 (1997): 11-23. <http://eudml.org/doc/207050>.

@article{P1997,
author = {P. Guerzhoy},
journal = {Acta Arithmetica},
keywords = {Ramanujan congruence; congruences between special values of -functions of modular forms; Fourier coefficients},
language = {eng},
number = {1},
pages = {11-23},
title = {On Ramanujan congruences between special values of Hecke and Dirichlet L-functions},
url = {http://eudml.org/doc/207050},
volume = {81},
year = {1997},
}

TY - JOUR
AU - P. Guerzhoy
TI - On Ramanujan congruences between special values of Hecke and Dirichlet L-functions
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 1
SP - 11
EP - 23
LA - eng
KW - Ramanujan congruence; congruences between special values of -functions of modular forms; Fourier coefficients
UR - http://eudml.org/doc/207050
ER -

References

top
  1. [1] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-285. Zbl0311.10030
  2. [2] B. Datskovsky and P. Guerzhoy, On Ramanujan congruences for modular forms of higher weight, Proc. Amer. Math. Soc., to appear. Zbl0864.11023
  3. [3] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Ecole Norm. Sup. 7 (1974), 507-530. Zbl0321.10026
  4. [4] P. I. Gerzhoĭ and A. A. Panchishkin, Finiteness criterion for the number of rational points on twisted Weil elliptic curves, Zap. Nauch. Sem. LOMI 160 (1987), 41-53. Zbl0679.14013
  5. [5] N. M. Katz, p-adic continuation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571. 
  6. [6] N. Koblitz, Congruences for periods of modular forms, Duke Math. J. 54 (1987), 361-373. Zbl0628.10032
  7. [7] N. Koblitz, p-adic congruences and modular forms of half integer weight, Math. Ann. 274 (1986), 199-220. Zbl0571.10030
  8. [8] W. Kohnen, A simple remark on eigenvalues of Hecke operators on Siegel modular forms, Abh. Math. Sem. Univ. Hamburg 57 (1987), 33-36. Zbl0641.10022
  9. [9] Yu. I. Manin, Periods of parabolic forms and p-adic Hecke series, Mat. Sb. 92 (1973), 378-401 (in Russian). Zbl0293.14007
  10. [10] K. A. Ribet, Congruence relations between modular forms, in: Proceedings of the International Congress of Mathematicians (Warsaw, 1983), PWN, Warszawa, 1984, 503-514. Zbl0575.10024
  11. [11] G. Shimura, The special values of the zeta-functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), 783-804. Zbl0348.10015
  12. [12] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, in: Modular Functions of One Variable III, Lecture Notes in Math. 350, Springer, 1973, 1-55. 
  13. [13] H. P. F. Swinnerton-Dyer, Congruence properties of τ(n), in: Ramanujan Revisited, Proceedings of the Centenary Conference, Academic Press, 1988, 289-311. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.