On Diophantine quintuples

Andrej Dujella

Acta Arithmetica (1997)

  • Volume: 81, Issue: 1, page 69-79
  • ISSN: 0065-1036

How to cite

top

Andrej Dujella. "On Diophantine quintuples." Acta Arithmetica 81.1 (1997): 69-79. <http://eudml.org/doc/207056>.

@article{AndrejDujella1997,
author = {Andrej Dujella},
journal = {Acta Arithmetica},
keywords = {quadratic diophantine equations; perfect square; diophantine quintuple; diophantine quadruples},
language = {eng},
number = {1},
pages = {69-79},
title = {On Diophantine quintuples},
url = {http://eudml.org/doc/207056},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Andrej Dujella
TI - On Diophantine quintuples
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 1
SP - 69
EP - 79
LA - eng
KW - quadratic diophantine equations; perfect square; diophantine quintuple; diophantine quadruples
UR - http://eudml.org/doc/207056
ER -

References

top
  1. [1] J. Arkin, D. C. Arney, F. R. Giordano, R. A. Kolb and G. E. Bergum, An extension of an old classical Diophantine problem, in: Application of Fibonacci Numbers, Vol. 5, G. E. Bergum, A. N. Philippou and A. F. Horadam (eds.), Kluwer, Dordrecht, 1993, 45-48. Zbl0891.11007
  2. [2] J. Arkin and G. E. Bergum, More on the problem of Diophantus, in: Application of Fibonacci Numbers, Vol. 2, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 177-181. Zbl0649.10011
  3. [3] J. Arkin, V. E. Hoggatt and E. G. Straus, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333-339. Zbl0418.10021
  4. [4] H. Davenport and A. Baker, The equations 3x²-2 = y² and 8x²-7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  5. [5] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow, 1974 (in Russian). 
  6. [6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27. Zbl0849.11018
  7. [7] A. Dujella, Diophantine quadruples for squares of Fibonacci and Lucas numbers, Portugal. Math. 52 (1995), 305-318. Zbl0844.11015
  8. [8] A. Dujella, Generalized Fibonacci numbers and the problem of Diophantus, Fibonacci Quart. 34 (1996), 164-175. Zbl0856.11017
  9. [9] A. Dujella, Generalization of the Problem of Diophantus and Davenport, Dissertation, University of Zagreb, 1996 (in Croatian). 
  10. [10] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30. Zbl0882.11018
  11. [11] A. Dujella, A problem of Diophantus and Pell numbers, in: Application of Fibonacci Numbers, Vol. 7, Kluwer, Dordrecht, to appear. Zbl0920.11011
  12. [12] P. Heichelheim, The study of positive integers (a,b) such that ab + 1 is a square, Fibonacci Quart. 17 (1979), 269-274. Zbl0416.10011
  13. [13] V. E. Hoggatt and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, ibid. 15 (1977), 323-330. Zbl0383.10007
  14. [14] C. Long and G. E. Bergum, On a problem of Diophantus, in: Application of Fibonacci Numbers, Vol. 2, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 183-191. 
  15. [15] S. P. Mohanty and M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its application, Simon Stevin 59 (1985), 203-214. Zbl0575.10010
  16. [16] V. K. Mootha, On the set of numbers {14,22,30,42,90}, Acta Arith. 71 (1995), 259-263. Zbl0820.11014
  17. [17] M. Veluppillai, The equations z²-3y² = -2 and z²-6x² = -5, in: A Collection of Manuscripts Related to the Fibonacci Sequence, V. E. Hoggatt and M. Bicknell-Johnson (eds.), The Fibonacci Association, Santa Clara, 1980, 71-75. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.