Diophantine -tuples and elliptic curves
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 111-124
 - ISSN: 1246-7405
 
Access Full Article
topAbstract
topHow to cite
topDujella, Andrej. "Diophantine $m$-tuples and elliptic curves." Journal de théorie des nombres de Bordeaux 13.1 (2001): 111-124. <http://eudml.org/doc/248693>.
@article{Dujella2001,
	abstract = {A Diophantine $m$-tuple is a set of $m$ positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form $y^2 = (ax + 1)(bx + 1)(cx + 1)$, where $\lbrace a, b, c\rbrace $, is a Diophantine triple. In particular, we consider the elliptic curve $E_k$ defined by the equation $y^2 = (F_\{2k\}x + 1) (F_\{2k+2\}x + 1) (F_\{2k+4\}x + 1),$ where $k \ge 2$ and $F_n$, denotes the $n$-th Fibonacci number. We prove that if the rank of $E_k (\mathbf \{Q\})$ is equal to one, or $k \le 50$, then all integer points on $E_k$ are given by\begin\{multline*\}(x, y) \in \lbrace (0 \pm 1), (4F\_\{2k+1\} F\_\{2k+2\}F\_\{2k+3\} \pm \left( 2F\_\{2k+1\} F\_\{2k+2\} - 1 \right)\\
\times \left( 2 F^2\_\{2k+2\} + 1 \right) \left( 2 F\_\{2k+2\} F\_\{2k+3\} + 1 \right) \rbrace .\end\{multline*\}},
	author = {Dujella, Andrej},
	journal = {Journal de théorie des nombres de Bordeaux},
	language = {eng},
	number = {1},
	pages = {111-124},
	publisher = {Université Bordeaux I},
	title = {Diophantine $m$-tuples and elliptic curves},
	url = {http://eudml.org/doc/248693},
	volume = {13},
	year = {2001},
}
TY  - JOUR
AU  - Dujella, Andrej
TI  - Diophantine $m$-tuples and elliptic curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
PB  - Université Bordeaux I
VL  - 13
IS  - 1
SP  - 111
EP  - 124
AB  - A Diophantine $m$-tuple is a set of $m$ positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form $y^2 = (ax + 1)(bx + 1)(cx + 1)$, where $\lbrace a, b, c\rbrace $, is a Diophantine triple. In particular, we consider the elliptic curve $E_k$ defined by the equation $y^2 = (F_{2k}x + 1) (F_{2k+2}x + 1) (F_{2k+4}x + 1),$ where $k \ge 2$ and $F_n$, denotes the $n$-th Fibonacci number. We prove that if the rank of $E_k (\mathbf {Q})$ is equal to one, or $k \le 50$, then all integer points on $E_k$ are given by\begin{multline*}(x, y) \in \lbrace (0 \pm 1), (4F_{2k+1} F_{2k+2}F_{2k+3} \pm \left( 2F_{2k+1} F_{2k+2} - 1 \right)\\
\times \left( 2 F^2_{2k+2} + 1 \right) \left( 2 F_{2k+2} F_{2k+3} + 1 \right) \rbrace .\end{multline*}
LA  - eng
UR  - http://eudml.org/doc/248693
ER  - 
References
top- [1] J. Arkin, V.E. Hoggatt, E.G. Strauss, On Euler's solution of a problem of Diophantus. Fibonacci Quart.17 (1979), 333-339. Zbl0418.10021MR550175
 - [2] A. Baker, H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. Zbl0177.06802MR248079
 - [3] A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. Reine Angew. Math.442 (1993), 19-62. Zbl0788.11026MR1234835
 - [4] J.H.E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc.7 (1965), 24-28. Zbl0127.01902MR177944
 - [5] J.E. Cremona, Algorithms for Modular Elliptic Curves. Cambridge Univ. Press, 1997. Zbl0872.14041MR1628193
 - [6] L.E. Dickson, History of the Theory of Numbers. Vol. 2, Chelsea, New York, 1966, pp. 513-520. Zbl0958.11500
 - [7] DIOPHANTUS OF ALEXANDRIA, Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
 - [8] A. Dujella, On Diophantine quintuples. Acta Arith.81 (1997), 69-79. Zbl0871.11019MR1454157
 - [9] A. Dujella, The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen51 (1997), 311-322. Zbl0903.11010MR1485226
 - [10] A. Dujella, A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc.127 (1999), 1999-2005. Zbl0937.11011MR1605956
 - [11] A. Dujella, A parametric family of elliptic curves. Acta Arith.94 (2000), 87-101. Zbl0972.11048MR1762457
 - [12] A. Dujella, Absolute bound for the size of Diophantine m-tuples. J. Number Theory, to appear. Zbl1010.11019MR1838708
 - [13] A. Dujella, A. Pethö, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306. Zbl0911.11018MR1645552
 - [14] A. Dujella, A. Pethö, Integer points on a family of elliptic curves. Publ. Math. Debrecen56 (2000), 321-335. Zbl0960.11019MR1765985
 - [15] E. Herrmann, A. Pethö, H.G. Zimmer, On Fermat's quadruple equations. Abh. Math. Sem. Univ. Hamburg69 (1999), 283-291. Zbl0952.11033MR1722939
 - [16] V.E. Hoggatt, G.E. Bergum, A problem of Fermat and the Fibonacci sequence. Fibonacci Quart.15(1977), 323-330. Zbl0383.10007MR457339
 - [17] D. Husemöller, Elliptic Curves. Springer-Verlag, New York, 1987. Zbl0605.14032MR868861
 - [18] B.W. Jones, A second variation on a problem of Diophantus and Davenport. Fibonacci Quart.16 (1978), 155-165. Zbl0382.10011MR498978
 - [19] K.S. Kedlaya, Solving constrained Pell equations. Math. Comp.67 (1998), 833-842. Zbl0945.11027MR1443123
 - [20] A. Knapp, Elliptic Curves. Princeton Univ. Press, 1992. Zbl0804.14013MR1193029
 - [21] B. Mazur, Rational isogenies of prime degree. Invent. Math.44 (1978), 129-162. Zbl0386.14009MR482230
 - [22] T. Nagell, Introduction to Number Theory. Almqvist, Stockholm; Wiley, New York, 1951. Zbl0042.26702MR43111
 - [23] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal.16 (1954), 1-38. Zbl0057.28304MR70645
 - [24] K. Ono, Euler's concordant forms. Acta Arith.78 (1996), 101-123. Zbl0863.11038MR1424534
 - [25] A. Pethö, E. Herrmann, H.G. Zimmer, S-integral points on elliptic curves and Fermat's triple equations. In: Algorithmic Number Theory, (J. P. Buhler, ed.), Lecture Notes in Comput. Sci. 1423 (1998), 528-540. Zbl0920.11086
 - [26] SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.
 - [27] M. Vellupillai, The equations z2 - 3y2 = -2 and z2 - 6x2 = -5, in: A Collection of Manuscripts Related to the Fibonacci Sequence. (V. E. Hoggatt, M. Bicknell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75. Zbl0511.00007MR624070
 - [28] D. Zagier, Elliptische Kurven: Fortschritte und Anwendungen. Jahresber. Deutsch. Math.-Verein92 (1990), 58-76. Zbl0708.14019MR1056202
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.